Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe N. Peyrefitte is active.

Publication


Featured researches published by Christophe N. Peyrefitte.


PLOS ONE | 2012

Crimean-Congo Hemorrhagic Fever Virus-Infected Hepatocytes Induce ER-Stress and Apoptosis Crosstalk

Raquel Rodrigues; Glaucia Paranhos-Baccala; Guy Vernet; Christophe N. Peyrefitte

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed tick-borne member of the Nairovirus genus (Bunyaviridae) with a high mortality rate in humans. CCHFV induces a severe disease in infected patients that includes, among other symptoms, massive liver necrosis and failure. The interaction between liver cells and CCHFV is therefore important for understanding the pathogenesis of this disease. Here, we described the in vitro CCHFV-infection and -replication in the hepatocyte cell line, Huh7, and the induced cellular and molecular response modulation. We found that CCHFV was able to infect and replicate to high titres and to induce a cytopathic effect (CPE). We also observed by flow cytometry and real time quantitative RT-PCR evidence of apoptosis, with the participation of the mitochondrial pathway. On the other hand, we showed that the replication of CCHFV in hepatocytes was able to interfere with the death receptor pathway of apoptosis. Furthermore, we found in CCHFV-infected cells the over-expression of PUMA, Noxa and CHOP suggesting the crosstalk between the ER-stress and mitochondrial apoptosis. By ELISA, we observed an increase of IL-8 in response to viral replication; however apoptosis was shown to be independent from IL-8 secretion. When we compared the induced cellular response between CCHFV and DUGV, a mild or non-pathogenic Nairovirus for humans, we found that the most striking difference was the absence of CPE and apoptosis. Despite the XBP1 splicing and PERK gene expression induced by DUGV, no ER-stress and apoptosis crosstalk was observed. Overall, these results suggest that CCHFV is able to induce ER-stress, activate inflammatory mediators and modulate both mitochondrial and death receptor pathways of apoptosis in hepatocyte cells, which may, in part, explain the role of the liver in the pathogenesis of CCHFV.


Virus Research | 2014

Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection

Christophe Fraisier; Raquel Rodrigues; Vinh Vu Hai; Maya Belghazi; Stéphanie Bourdon; Glaucia Paranhos-Baccala; Luc Camoin; Lionel Almeras; Christophe N. Peyrefitte

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus responsible for hemorrhagic manifestations and multiple organ failure, with a high mortality rate. In infected humans, damage to endothelial cells and vascular leakage may be a direct result of virus infection or an immune response-mediated indirect effect. The main target cells are mononuclear phagocytes, endothelial cells and hepatocytes; the liver being a key target for the virus, which was described as susceptible to interferon host response and to induce apoptosis. To better understand the early liver cell alterations due to virus infection, the protein profile of in vitro CCHFV-infected HepG2 cells was analyzed using two quantitative proteomic approaches, 2D-DIGE and iTRAQ. A set of 243 differentially expressed proteins was identified. Bioinformatics analysis (Ingenuity Pathways Analysis) revealed multiple host cell pathways and functions altered after CCHFV infection, with notably 106 proteins related to cell death, including 79 associated with apoptosis. Different protein networks emerged with associated pathways involved in inflammation, oxidative stress and apoptosis, ubiquitination/sumoylation, regulation of the nucleo-cytoplasmic transport, and virus entry. Collectively, this study revealed host liver protein abundances that were modified at the early stages of CCHFV infection, offering an unparalleled opportunity of the description of the potential pathogenesis processes and of possible targets for antiviral research.


PLOS ONE | 2011

The Human Metapneumovirus Matrix Protein Stimulates the Inflammatory Immune Response In Vitro

Audrey Bagnaud-Baule; Olivier Reynard; Magali Perret; Jean-Luc Berland; Mimoun Maache; Christophe N. Peyrefitte; Guy Vernet; Viktor Volchkov; Glaucia Paranhos-Baccala

Each year, during winter months, human Metapneumovirus (hMPV) is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV) response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs) during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs) and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.


Journal of Virology | 2016

Enhancement of Ebola virus infection via ficolin-1 interaction with the mucin domain of GP glycoprotein

Anne-Laure Favier; Evelyne Gout; Olivier Reynard; Olivier Ferraris; Jean-Philippe Kleman; Viktor E. Volchkov; Christophe N. Peyrefitte; Nicole M. Thielens

ABSTRACT Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. IMPORTANCE A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response.


Emerging Infectious Diseases | 2013

Concomitant human infections with 2 cowpox virus strains in related cases, France, 2011.

Corinne Ducournau; Audrey Ferrier-Rembert; Olivier Ferraris; Aurélie Joffre; Anne-Laure Favier; Olivier Flusin; Dieter Van Cauteren; Kaci Kecir; Brigitte Auburtin; Serge Védy; Maël Bessaud; Christophe N. Peyrefitte

We investigated 4 related human cases of cowpox virus infection reported in France during 2011. Three patients were infected by the same strain, probably transmitted by imported pet rats, and the fourth patient was infected by another strain. The 2 strains were genetically related to viruses previously isolated from humans with cowpox infection in Europe.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2016

Structural analysis of point mutations at the Vaccinia virus A20/D4 interface.

Céline Contesto-Richefeu; Nicolas Tarbouriech; Xavier Brazzolotto; Wim P. Burmeister; Christophe N. Peyrefitte; Frédéric Iseni

The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.


Nature Communications | 2017

The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding

Nicolas Tarbouriech; Corinne Ducournau; Stephanie Hutin; Philippe J. Mas; Petr Man; Eric Forest; Darren J. Hart; Christophe N. Peyrefitte; Wim P. Burmeister; Frédéric Iseni

Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7u2009Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta–DNA complex.The catalytic subunit E9 of the vaccinia virus DNA polymerase forms a functional polymerase holoenzyme by interacting with the heterodimeric processivity factor A20/D4. Here the authors present the structure of full-length E9 and show that an insertion within its palm domain binds A20, in a mode different from other family B polymerases.


npj Vaccines | 2018

A Rift Valley fever virus Gn ectodomain-based DNA vaccine induces a partial protection not improved by APC targeting

Tiphany Chrun; Sandra Lacôte; Céline Urien; Luc Jouneau; Céline Barc; Edwige Bouguyon; Vanessa Contreras; Audrey Ferrier-Rembert; Christophe N. Peyrefitte; Núria Busquets; Enric Vidal; Joan Pujols; Philippe Marianneau; Isabelle Schwartz-Cornil

Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial—although incomplete—protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus.Rift Valley fever: DNA vaccines hold promise, but need workA vaccine made from the genome of Rift Valley fever virus (RVFV) offers partial protection, but pieces of the puzzle are missing, say scientists. French and Spanish researchers, led by the French National Institute for Agricultural Research’s Isabelle Schwartz-Cornil, tested in sheep three slightly-differing vaccine candidates using RVFV genes. Such DNA vaccines are designed to generate proteins which a host’s immune system can use to arm itself against a genuine viral infection. Two of the candidates, designed to target cells that would present the viral proteins to the host’s immune system, provided some benefit to the vaccinated sheep. However, the third untargeted candidate, was the most efficient at protecting sheep, although not completely, and at boosting antibody levels despite not neutralizing the virus. These results provide hope for DNA vaccines against RVFV, and offer direction for future research effort.


Virologie | 2016

Les parapoxvirus, des agents zoonotiques encore mal connus

Maël Bessaud; Olivier Ferraris; Audrey Ferrier-Rembert; Fanny Jarjaval; Anne-Laure Favier; Frédéric Iseni; Christophe N. Peyrefitte

Parapoxviruses, double-stranded DNA viruses of the Poxviridæ family, are etiologic agents of cutaneaous infectious diseases among farm animals. These highly contagious viruses are responsible for wide outbreaks among livestock. The clinical manifestations are generally mild and consist of cutaneous or mucosal lesions, which resolve spontaneously within a few weeks. However, secondary bacterial or fungal infections on the lesion sites can aggravate the symptoms. Sore lesions located within the oral cavity and on the udders can impair feeding or nursing, thus leading to death. Livestock parapoxviruses can infect humans by direct or indirect transmission and affect mainly farmers, slaughters and veterinarians. Human symptoms generally consist of small cutaneous lesions located at the inoculation points but more severe forms can occur, peculiarly in immunocompromised persons. The parapoxvirus epidemiology is poorly understood: their respective host range and ecology among wild animals are to be clarified. The identification of parapoxviruses among marine mammals suggests that the genetic diversity within the genus is still underestimated.


Viruses | 2017

The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus

Déborah Delaune; Frédéric Iseni; Audrey Ferrier-Rembert; Christophe N. Peyrefitte; Olivier Ferraris

Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.

Collaboration


Dive into the Christophe N. Peyrefitte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktor E. Volchkov

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Vernet

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Olivier Reynard

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge