Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Pannecouque is active.

Publication


Featured researches published by Christophe Pannecouque.


Nature Protocols | 2008

Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors: revisited 20 years later

Christophe Pannecouque; Dirk Daelemans; Erik De Clercq

Since its first description 20 years ago, the tetrazolium-based colorimetric (MTT) assay using MT-4 cells for the detection of anti-HIV compounds has been widely used. This method, which remains popular, provides more information than more recently developed methods and, therefore, represents a useful methodology on its own or in combination with other screening systems. The replication of HIV in MT-4 cells is usually monitored 5 d after infection; therefore, this protocol can be divided into three steps: the infection (at day 0), an incubation period (5 d) and the evaluation (at day 5). The long-standing and intensive use of the MTT method has taught users of the limitations and, equally importantly, the unexpected advantages of the MT-4/MTT assay. The use of this method can be extended to antiviral testing of compounds against other cyto-destructive viruses.


Bioorganic & Medicinal Chemistry Letters | 2001

Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents

Maria Letizia Barreca; Alba Chimirri; Laura De Luca; Anna-Maria Monforte; Pietro Monforte; Angela Rao; Maria Zappalà; Jan Balzarini; Erik De Clercq; Christophe Pannecouque; Myriam Witvrouw

Design, synthesis and anti-HIV activity of a series of 2,3-diaryl-1,3-thiazolidin-4-ones are reported. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations thereby acting as non-nucleoside HIV-1 RT inhibitors (NNRTIs). SAR studies evidenced that the nature of the substituents at the 2 and 3 positions of the thiazolidinone nucleus largely influenced the in vitro anti-HIV activity of this new class of potent antiviral agents.


European Journal of Medicinal Chemistry | 2009

Synthesis and antiviral activity of new pyrazole and thiazole derivatives

Osama I. El-Sabbagh; Mohamed M. Baraka; Samy M. Ibrahim; Christophe Pannecouque; Graciela Andrei; Robert Snoeck; Jan Balzarini; Adel A. Rashad

New N-acetyl (5-8) and N-thiocarbamoyl (9-12) derivatives of 4,5-dihydropyrazole were synthesized starting from alpha,beta-unsaturated ketones under the effect of hydrazine hydrate and thiosemicarbazide, respectively. N-Thiocarbamoylpyrazole derivatives (9-12) were cyclized using either ethyl bromoacetate or phenacyl bromides to afford the novel pyrazolothiazol-4(5H)-ones (13-16) or pyrazolothiazoles (17-24). The antiviral activity for such novel compounds against a broad panel of viruses in different cell cultures revealed that N-acetyl 4,5-dihydropyrazole 7 was the only active one at subtoxic concentrations against vaccinia virus (Lederle strain) in HEL cell cultures with a 50% effective concentration (EC(50)) value of 7 microg/ml.


Farmaco | 2002

Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles

Marina Kritsanida; Anastasia Mouroutsou; Panagiotis Marakos; Nicole Pouli; Spyroula Papakonstantinou-Garoufalias; Christophe Pannecouque; Myriam Witvrouw; Erik De Clercq

A number of novel 3,6-disubstituted 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives, containing the adamantyl moiety, were synthesized and examined in various viral test systems. No antiviral effects were noted with any of the compounds at subtoxic concentrations in cell culture.


Journal of Medicinal Chemistry | 2002

Design, Synthesis, Structure-Activity Relationships, and Molecular Modeling Studies of 2,3-Diaryl-1,3-thiazolidin-4-ones as Potent Anti-HIV Agents

Maria Letizia Barreca; Jan Balzarini; Alba Chimirri; Erik De Clercq; Laura De Luca; Hans Dieter Höltje; Monika Höltje; Anna Maria Monforte; Pietro Monforte; Christophe Pannecouque; and Angela Rao; Maria Zappalà

Starting from 1H,3H-thiazolo[3,4-a]benzimidazoles (TBZs), we performed the design, synthesis, and the structure-activity relationship studies of a series of 2,3-diaryl-1,3-thiazolidin-4-ones. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations with minimal cytotoxicity, thereby acting as nonnucleoside HIV-1 RT inhibitors (NNRTIs). Computational studies were used to delineate the ligand-RT interactions and to probe the binding of the ligands to HIV-1 RT.


Phytotherapy Research | 2001

Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected ethiopian medicinal plants

Kaleab Asres; Th. Kartnig; Myriam Witvrouw; Christophe Pannecouque; E. De Clercq

Ethiopian medicinal plants used for the treatment of a variety of ailments including infectious diseases were screened for activity against human immunodeficiency virus type 1 (HIV‐1) and type 2 (HIV‐2). Seventy‐one polar and nonpolar extracts derived from 21 plants belonging to 14 families were tested for inhibition of viral replication using HIV‐1 (IIIB) and HIV‐2 (ROD) strains. Selective inhibition of viral growth was assessed by the simultaneous determination of the in vitro cytotoxicity of each of the extracts against MT‐4 cells. Six extracts made from the root bark of Bersama abyssinica Fresen, the leaves of Combretum paniculatum Vent., and Dodonaea angustifolia L.f., and the stem bark of Ximenia americana L. displayed antiviral activity at concentrations that were nontoxic to MT‐4 cells. The highest selective inhibition of HIV‐1 replication was observed with the acetone fraction of C. paniculatum and the methanol fraction of D. angustifolia which showed selectivity indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 6.4 and 4.9, and afforded cell protection of viral induced cytopathic effect of 100% and 99%, respectively, when compared with control samples. The greatest degree of antiviral activity against HIV‐2 was achieved with the acetone extract of C. paniculatum (EC50: 3 µg/mL), which also showed the highest selectivity index (32). The 50% cytotoxic concentration ranged from 0.5 µg/mL for the hexane extract of D. angustifolia L.f., the most cytotoxic of the extracts tested, to >250 µg/mL for some extracts such as the methanol fraction of Alcea rosea L., the least toxic tested. Only the polar extracts that were obtained by extraction with hydroalcohol, methanol or acetone exhibited inhibition of viral growth at subtoxic concentrations. The results obtained in this study enable the selection of extracts which show some specificity of action and support the further investigation of these extracts for their potential as new lead antiretroviral compounds. Copyright


Antimicrobial Agents and Chemotherapy | 2000

Prevalence and characteristics of multinucleoside-resistant human immunodeficiency virus type 1 among European patients receiving combinations of nucleoside analogues.

K Van Vaerenbergh; K. Van Laethem; Jan Albert; Charles A. Boucher; Bonaventura Clotet; M. Floridia; Jan Gerstoft; Bo Hejdeman; Carsten Uhd Nielsen; Christophe Pannecouque; Luc Perrin; M. F. Pirillo; L Ruiz; Jc Schmit; François Schneider; A. Schoolmeester; Rob Schuurman; H. J. Stellbrink; Lieven J. Stuyver; J. Van Lunzen; B Van Remoortel; E. Van Wijngaerden; S. Vella; Myriam Witvrouw; Sabine Yerly; E. De Clercq; Jan Desmyter; Anne-Mieke Vandamme

ABSTRACT The prevalence and the genotypic and phenotypic characteristics of multinucleoside-resistant (MNR) human immunodeficiency virus type 1 (HIV-1) variants in Europe were investigated in a multicenter study that involved centers in nine European countries. Study samples (n = 363) collected between 1991 and 1997 from patients exposed to two or more nucleoside analogue reverse transcriptase inhibitors (NRTIs) and 274 control samples from patients exposed to no or one NRTI were screened for two marker mutations of multinucleoside resistance (the Q151M mutation and a mutation with a 2-amino-acid insertion at codon 69, T69S-XX). Q151M was identified in six of the study samples (1.6%), and T69S-XX was identified in two of the study samples (0.5%; both of them T69S-SS), but both patterns were absent among control samples. Non-NRTI (NNRTI)-related changes were observed in viral strains from two patients, which displayed the Q151M resistance pattern, although the patients were NNRTI naive. The patients whose isolates displayed multinucleoside resistance had received treatment with zidovudine and either didanosine, zalcitabine, or stavudine. Both resistance patterns conferred broad cross-resistance to NRTIs in vitro and a poor response to treatment in vivo. MNR HIV-1 is found only among multinucleoside-experienced patients. Its prevalence is low in Europe, but it should be closely monitored since it seriously limits treatment options.


Journal of Virology | 2003

Development of Resistance against Diketo Derivatives of Human Immunodeficiency Virus Type 1 by Progressive Accumulation of Integrase Mutations

Valery Fikkert; Bénédicte Van Maele; Jo Vercammen; Anke Hantson; Barbara Van Remoortel; Martine Michiels; Cristina Gurnari; Christophe Pannecouque; Marc De Maeyer; Yves Engelborghs; Erik De Clercq; Zeger Debyser; Myriam Witvrouw

ABSTRACT The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3′ processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.


Journal of Virology | 2005

Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A

Myriam Witvrouw; Valery Fikkert; Anke Hantson; Christophe Pannecouque; Barry R. O'Keefe; James B. McMahon; Leonidas Stamatatos; Erik De Clercq; Anders Bolmstedt

ABSTRACT Due to the biological significance of the carbohydrate component of the human immunodeficiency virus type 1 (HIV-1) glycoproteins in viral pathogenesis, the glycosylation step constitutes an attractive target for anti-HIV therapy. Cyanovirin N (CV-N), which specifically targets the high-mannose (HM) glycans on gp120, has been identified as a potent HIV-1 entry inhibitor. Concanavalin A (ConA) represents another mannose-binding lectin, although it has a lower specificity for HM glycans than that of CV-N. For the present study, we selected CV-N- and ConA-resistant HIV-1 strains in the presence of CV-N and ConA, respectively. Both resistant strains exhibited a variety of mutations eliminating N-linked glycans within gp120. Strains resistant to CV-N or ConA displayed high levels of cross-resistance towards one another. The N-glycan at position 302 was eliminated in both of the lectin-resistant strains. However, the elimination of this glycan alone by site-directed mutagenesis was not sufficient to render HIV-1 resistant to CV-N or ConA, suggesting that HIV-1 needs to mutate several N-glycans to become resistant to these lectins. Both strains also demonstrated clear cross-resistance towards the carbohydrate-dependent monoclonal antibody 2G12. In contrast, the selected strains did not show a reduced susceptibility towards the nonlectin entry inhibitors AMD3100 and enfuvirtide or towards reverse transcriptase or protease inhibitors. Recombination of the mutated gp160 genes of the strains resistant to CV-N or ConA into a wild-type background fully reproduced the (cross-)resistance profiles of the originally selected strains, pointing to the impact of the N-glycan mutations on the phenotypic resistance profiles of both selected strains.


Journal of Medicinal Chemistry | 2010

A 1,8-naphthyridone derivative targets the HIV-1 Tat-mediated transcription and potently inhibits the HIV-1 replication.

Serena Massari; Dirk Daelemans; Maria Letizia Barreca; Anna Knezevich; Stefano Sabatini; Violetta Cecchetti; Alessandro Marcello; Christophe Pannecouque; Oriana Tabarrini

The emergence of multidrug resistant HIV-1 strains and the inability of the HAART to eradicate HIV-1 virus from infected patients demand new drugs able to interfere with an alternative step of the replicative cycle. The naphthyridone 3 (HM13N), described in the present study, is a promising anti-HIV agent due to its ability to inhibit the HIV-1 Tat-mediated transcription and the potent antiviral activity observed in acutely, chronically, and latently infected cells. The absence of any tendency to select for resistance mutations in vitro adds to the potential clinical value of this type of compounds, especially as these compounds are drug-like and obey the Lipinski rules.

Collaboration


Dive into the Christophe Pannecouque's collaboration.

Top Co-Authors

Avatar

Erik De Clercq

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jan Balzarini

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Myriam Witvrouw

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Daelemans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

E. De Clercq

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeger Debyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anne-Mieke Vandamme

Rega Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge