Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Raufaste is active.

Publication


Featured researches published by Christophe Raufaste.


European Physical Journal E | 2011

Understanding and predicting viscous, elastic, plastic flows

Ibrahim Cheddadi; Pierre Saramito; Benjamin Dollet; Christophe Raufaste; François Graner

Abstract.Foams, gels, emulsions, polymer solutions, pastes and even cell assemblies display both liquid and solid mechanical properties. On a local scale, such “soft glassy” systems are disordered assemblies of deformable rearranging units, the complexity of which gives rise to their striking flow behaviour. On a global scale, experiments show that their mechanical behaviour depends on the orientation of their elastic deformation with respect to the flow direction, thus requiring a description by tensorial equations for continuous materials. However, due to their strong non-linearities, the numerous candidate models have not yet been solved in a general multi-dimensional geometry to provide stringent tests of their validity. We compute the first solutions of a continuous model for a discriminant benchmark, namely the flow around an obstacle. We compare it with experiments of a foam flow and find an excellent agreement with the spatial distribution of all important features: we accurately predict the experimental fields of velocity, elastic deformation, and plastic deformation rate in terms of magnitude, direction, and anisotropy. We analyse the role of each parameter, and demonstrate that the yield strain is the main dimensionless parameter required to characterize the materials. We evidence the dominant effect of elasticity, which explains why the stress does not depend simply on the shear rate. Our results demonstrate that the behaviour of soft glassy materials cannot be reduced to an intermediate between that of a solid and that of a liquid: the viscous, the elastic and the plastic contributions to the flow, as well as their couplings, must be treated simultaneously. Our approach opens the way to the realistic multi-dimensional prediction of complex flows encountered in geophysical, industrial and biological applications, and to the understanding of the link between structure and rheology of soft glassy systems.


European Physical Journal E | 2008

Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions

François Graner; Benjamin Dollet; Christophe Raufaste; Philippe Marmottant

Abstract.Discrete rearranging patterns include cellular patterns, for instance liquid foams, biological tissues, grains in polycrystals; assemblies of particles such as beads, granular materials, colloids, molecules, atoms; and interconnected networks. Such a pattern can be described as a list of links between neighbouring sites. Performing statistics on the links between neighbouring sites yields average quantities (hereafter “tools”) as the result of direct measurements on images. These descriptive tools are flexible and suitable for various problems where quantitative measurements are required, whether in two or in three dimensions. Here, we present a coherent set of robust tools, in three steps. First, we revisit the definitions of three existing tools based on the texture matrix. Second, thanks to their more general definition, we embed these three tools in a self-consistent formalism, which includes three additional ones. Third, we show that the six tools together provide a direct correspondence between a small scale, where they quantify the discrete patterns local distortion and rearrangements, and a large scale, where they help describe a material as a continuous medium. This enables to formulate elastic, plastic, fluid behaviours in a common, self-consistent modelling using continuous mechanics. Experiments, simulations and models can be expressed in the same language and directly compared. As an example, a companion paper (P. Marmottant, C. Raufaste, and F. Graner, this issue, 25 (2008) DOI 10.1140/epje/i2007-10300-7) provides an application to foam plasticity.


arXiv: Chemical Physics | 2011

The mechanism of porosity formation during solvent-mediated phase transformations

Christophe Raufaste; Bjørn Jamtveit; Timm John; Paul Meakin; Dag Kristian Dysthe

Solvent-mediated solid–solid phase transformations often result in the formation of a porous medium, which may be stable on long time scales or undergo ripening and consolidation. We have studied replacement processes in the KBr–KCl–H2O system using both in situ and ex situ experiments. The replacement of a KBr crystal by a K(Br,Cl) solid solution in the presence of an aqueous solution is facilitated by the generation of a surprisingly stable, highly anisotropic and connected pore structure that pervades the product phase. This pore structure ensures efficient solute transport from the bulk solution to the reacting KBr and K(Br,Cl) surfaces. The compositional profile of the K(Br,Cl) solid solution exhibits striking discontinuities across disc-like cavities in the product phase. Similar transformation mechanisms are probably important in controlling phase-transformation processes and rates in a variety of natural and man-made systems.


European Physical Journal E | 2007

Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction

Christophe Raufaste; Benjamin Dollet; Simon Cox; Yi Jiang; François Graner

Abstract.We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.


Physical Review E | 2005

Two-dimensional flow of foam around an obstacle: force measurements.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Christophe Raufaste; Miguel Aubouy; François Graner

A Stokes experiment for foams is proposed. It consists of a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle versus various separately controlled parameters: flow rate, bubble volume, bulk viscosity, obstacle size, shape, and boundary conditions. We separate the drag into two contributions: an elastic one (yield drag) at vanishing flow rate and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size and increases proportionally to the obstacle size. We quantify the effect of shape through a dimensional drag coefficient, and we show that the effect of boundary conditions is small.


European Physical Journal E | 2008

Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam.

Philippe Marmottant; Christophe Raufaste; François Graner

Abstract.The plastic flow of a foam results from bubble rearrangements. We study their occurrence in experiments where a foam is forced to flow in 2D: around an obstacle; through a narrow hole; or sheared between rotating disks. We describe their orientation and frequency using a topological matrix defined in the companion paper (F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, this issue, 25 (2008) DOI 10.1140/epje/i2007-10298-8), which links them with continuous plasticity at large scale. We then suggest a phenomenological equation to predict the plastic strain rate: its orientation is determined from the foams local elastic strain; and its rate is determined from the foams local elongation rate. We obtain a good agreement with statistical measurements. This enables us to describe the foam as a continuous medium with fluid, elastic and plastic properties. We derive its constitutive equation, then test several of its terms and predictions.


European Physical Journal E | 2008

Numerical modelling of foam Couette flows

Ibrahim Cheddadi; Pierre Saramito; Christophe Raufaste; Philippe Marmottant; François Graner

Abstract.A numerical computation based on a tensorial visco-elasto-plastic model based on continuous mechanics is compared to experimental measurements on liquid foams for a bidimensional Couette flow between two glass plates, both in stationary and transient cases. The main features of the model are elasticity up to a plastic yield stress, and viscoelasticity above it. The effect of the friction of the plates is taken into account. The numerical modelling is based on a small set of standard material parameters that are fully characterised. Shear localisation as well as acute transient observations are reproduced and agree with experimental measurements. The plasticity appears to be the fundamental mechanism of the localisation of the flow. Finally, the present approach could be extended from liquid foams to similar materials such as emulsions, colloids or wet granular materials, that exhibit localisation.


Physical Review E | 2010

Discrete rearranging disordered patterns: Prediction of elastic and plastic behaviour, and application to two-dimensional foams

Christophe Raufaste; Simon Cox; Philippe Marmottant; François Graner

We study the elasto-plastic behavior of materials made of individual (discrete) objects such as a liquid foam made of bubbles. The evolution of positions and mutual arrangements of individual objects is taken into account through statistical quantities such as the elastic strain of the structure, the yield strain, and the yield function. The past history of the sample plays no explicit role except through its effect on these statistical quantities. They suffice to relate the discrete scale with the collective global scale. At this global scale, the material behaves as a continuous medium; it is described with tensors such as elastic strain, stress, and velocity gradient. We write the differential equations which predict their elastic and plastic behavior in both the general case and the case of simple shear. An overshoot in the shear strain or shear stress is interpreted as a rotation of the deformed structure, which is a purely tensorial effect that exists only if the yield strain is at least of order 0.3. We suggest practical applications including the following: when to choose a scalar formalism rather than a tensorial one; how to relax trapped stresses; and how to model materials with a low, or a high, yield strain.


Physics of Fluids | 2014

Two dimensional Leidenfrost droplets in a Hele-Shaw cell

Franck Celestini; Thomas Frisch; Alexandre Cohen; Christophe Raufaste; Laurent Duchemin; Yves Pomeau

We experimentally and theoretically investigate the behavior of Leidenfrost droplets inserted in a Hele-Shaw cell. As a result of the confinement from the two surfaces, the droplet has the shape of a flattened disc and is thermally isolated from the surface by the two evaporating vapor layers. An analysis of the evaporation rate using simple scaling arguments is in agreement with the experimental results. Using the lubrication approximation we numerically determine the shape of the droplets as a function of its radius. We furthermore find that the droplet width tends to zero at its center when the radius reaches a critical value. This prediction is corroborated experimentally by the direct observation of the sudden transition from a flattened disc into an expending torus. Below this critical size, the droplets are also displaying capillary azimuthal oscillating modes reminiscent of a hydrodynamic instability.


Physical Review E | 2012

Jet impact on a soap film.

Geoffroy Kirstetter; Christophe Raufaste; Franck Celestini

We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

Collaboration


Dive into the Christophe Raufaste's collaboration.

Top Co-Authors

Avatar

Alexandre Cohen

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Nathalie Fraysse

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Yann Bouret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Médéric Argentina

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Benjamin Dollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Rajchenbach

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Franck Celestini

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François Graner

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Simon Cox

Aberystwyth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge