Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Renault is active.

Publication


Featured researches published by Christophe Renault.


Analytical Chemistry | 2013

Hollow-channel paper analytical devices.

Christophe Renault; Xiang Li; Stephen E. Fosdick; Richard M. Crooks

We present a microfluidic paper analytical device (μPAD) that relies on flow in hollow channels, rather than through a cellulose network, to transport fluids. The flow rate in hollow channels is 7 times higher than in regular paper channels and can be conveniently controlled from 0 to several mm/s by balancing capillary and pressure forces. More importantly, the pressure of a single drop of liquid (~0.2 mbar) is sufficient to induce fast pressure-driven flow, making hollow channels suitable for point of care diagnostics. We demonstrate their utility for simple colorimetric glucose and BSA assays in which the time for liquid transport is reduced by a factor of 4 compared to normal cellulose channels.


Journal of the American Chemical Society | 2014

Electrochemistry in Hollow-Channel Paper Analytical Devices

Christophe Renault; Morgan J. Anderson; Richard M. Crooks

In the present article we provide a detailed analysis of fundamental electrochemical processes in a new class of paper-based analytical devices (PADs) having hollow channels (HCs). Voltammetry and amperometry were applied under flow and no flow conditions yielding reproducible electrochemical signals that can be described by classical electrochemical theory as well as finite-element simulations. The results shown here provide new and quantitative insights into the flow within HC-PADs. The interesting new result is that despite their remarkable simplicity these HC-PADs exhibit electrochemical and hydrodynamic behavior similar to that of traditional microelectrochemical devices.


Langmuir | 2014

Three-Dimensional Wax Patterning of Paper Fluidic Devices

Christophe Renault; Jessica Koehne; Antonio J. Ricco; Richard M. Crooks

In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.


Journal of the American Chemical Society | 2012

Unraveling the Mechanism of Catalytic Reduction of O2 by Microperoxidase-11 Adsorbed within a Transparent 3D-Nanoporous ITO Film

Christophe Renault; Claude P. Andrieux; Ryan T. Tucker; Michael J. Brett; Véronique Balland; Benoît Limoges

Nanoporous films of indium tin oxide (ITO), with thicknesses ranging from 250 nm to 2 μm, were prepared by Glancing Angle Deposition (GLAD) and used as highly sensitive transparent 3D-electrodes for quantitatively interrogating, by time-resolved spectroelectrochemistry, the reactivity of microperoxidase-11 (MP-11) adsorbed within such films. The capacitive current densities of these 3D-electrodes as well as the amount of adsorbed MP-11 were shown to be linearly correlated to the GLAD ITO film thickness, indicating a homogeneous distribution of MP-11 across the film as well as homogeneous film porosity. Under saturating adsorption conditions, MP-11 film concentration as high as 60 mM was reached. This is equivalent to a stack of 110 monolayers of MP-11 per micrometer film thickness. This high MP-11 film loading combined with the excellent ITO film conductivity has allowed the simultaneous characterization of the heterogeneous one-electron transfer dynamics of the MP-11 Fe(III)/Fe(II) redox couple by cyclic voltammetry and cyclic voltabsorptometry, up to a scan rate of few volts per second with a satisfactory single-scan signal-to-noise ratio. The potency of the method to unravel complex redox coupled chemical reactions was also demonstrated with the catalytic reduction of oxygen by MP-11. In the presence of O(2), cross-correlation of electrochemical and spectroscopic data has allowed us to determine the key kinetics and thermodynamics parameters of the redox catalysis that otherwise could not be easily extracted using conventional protein film voltammetry. On the basis of numerical simulations of cyclic voltammograms and voltabsorptograms and within the framework of different plausible catalytic reaction schemes including appropriate approximations, it was shown possible to discriminate between different possible catalytic pathways and to identify the relevant catalytic cycle. In addition, from the best fits of simulations to the experimental voltammograms and voltabsorptograms, the partition coefficient of O(2) for the ITO film as well as the values of two kinetic rate constants could be extracted. It was finally concluded that the catalytic reduction of O(2) by MP-11 adsorbed within nanoporous ITO films occurs via a 2-electron mechanism with the formation of an intermediate Fe(III)-OOH adduct characterized by a decay rate of 11 s(-1). The spectroelectroanalytical strategy presented here opens new opportunities for characterizing complex redox-coupled chemical reactions not only with redox proteins, but also with redox biomimetic systems and catalysts. It might also be of great interest for the development and optimization of new spectroelectrochemical sensors and biosensors, or eventually new photoelectrocatalytic systems or biofuel cells.


Angewandte Chemie | 2014

Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses

Jeffrey E. Dick; Christophe Renault; Byung-Kwon Kim; Allen J. Bard

We provide evidence of single attoliter oil droplet collisions at the surface of an ultra-microelectrode (UME) by the observation of simultaneous electrochemical current transients (i-t curves) and electrogenerated chemiluminescent (ECL) transients in an oil/water emulsion. An emulsion system based on droplets of toluene and tri-n-propylamine (2:1 v/v) emulsified with an ionic liquid and suspended in an aqueous continuous phase was formed by ultrasonification. When an ECL luminophore, such as rubrene, is added to the emulsion droplet, stochastic events can be tracked by observing both the current blips from oxidation at the electrode surface and the ECL blips from the follow-up ECL reaction, which produces light. This report provides a means of studying fundamental aspects of electrochemistry using the attoliter oil droplet and offers complementary analytical techniques for analyzing discrete collision events, size distribution of emulsion systems, and individual droplet electroactivity.


Analytical Chemistry | 2014

Simple, Sensitive, and Quantitative Electrochemical Detection Method for Paper Analytical Devices

Karen Scida; Josephine C. Cunningham; Christophe Renault; Ian Richards; Richard M. Crooks

We report a new type of paper analytical device that provides quantitative electrochemical output and detects concentrations as low as 767 fM. The model analyte is labeled with silver nanoparticles (AgNPs), which provide 250,000-fold amplification. AgNPs eliminate the need for enzymatic amplification, thereby improving device stability and response time. The use of magnetic beads to preconcentrate the AgNPs at the detection electrode further improves sensitivity. Response time is improved by incorporation of a hollow channel, which increases the flow rate in the device by a factor of 7 and facilitates the use of magnetic beads. A key reaction necessary for label detection is made possible by the presence of a slip layer, a fluidic switch that can be actuated by manually slipping a piece of paper. The design of the device is versatile and should be useful for detection of proteins, nucleic acids, and microbes.


Analytical Chemistry | 2014

Wire, mesh, and fiber electrodes for paper-based electroanalytical devices.

Stephen E. Fosdick; Morgan J. Anderson; Christophe Renault; Paul R. Degregory; James A. Loussaert; Richard M. Crooks

Here, we report the use of microwire and mesh working electrodes in paper analytical devices fabricated by origami paper folding (oPADs). The important new result is that Au wires and carbon fibers having diameters ranging from micrometers to tens of micrometers can be incorporated into oPADs and that their electrochemical characteristics are consistent with the results of finite element simulations. These electrodes are fully compatible with both hollow channels and paper channels filled with cellulose fibers, and they are easier to incorporate than typical screen-printed carbon electrodes. The results also demonstrate that the Au electrodes can be cleaned prior to device fabrication using aggressive treatments and that they can be easily surface modified using standard thiol-based chemistry.


Journal of the American Chemical Society | 2016

Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy

Jiyeon Kim; Christophe Renault; Nikoloz Nioradze; Netzahualcóyotl Arroyo-Currás; Kevin C. Leonard; Allen J. Bard

Understanding the relationship between the structure and the reactivity of catalytic metal nanoparticles (NPs) is important to achieve higher efficiencies in electrocatalytic devices. A big challenge remains, however, in studying these relations at the individual NP level. To address this challenge, we developed an approach using nanometer-scale scanning electrochemical microscopy (SECM) for the study of the geometric property and catalytic activity of individual Pt NPs in the hydrogen oxidation reaction (HOR). Herein, Pt NPs with a few tens to a hundred nm radius were directly electrodeposited on a highly oriented pyrolitic graphite (HOPG) surface via nucleation and growth without the necessity of capping agents or anchoring molecules. A well-defined nanometer-sized tip comparable to the dimensions of the NPs and a stable nanogap between the tip and NPs enabled us to achieve lateral and vertical spatial resolutions at a nanometer-scale and study fast electron-transfer kinetics. Specifically, the use of t...


Journal of the American Chemical Society | 2014

Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System

Jeffrey E. Dick; Christophe Renault; Byung Kwon Kim; Allen J. Bard

We describe a method to produce electrogenerated chemiluminescence (ECL) in water using a family of highly hydrophobic polycyclic aromatic hydrocarbon (PAH) luminophores and boron dipyrromethene (BODIPY). This method is based on an oil-in-water emulsion system. Various PAHs (rubrene, 9,10-diphenylanthracene, pyrene, or perylene) and BODIPY were trapped in a toluene and tri-n-propylamine mixed oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. ECL was observed for all the aforementioned PAHs and BODIPY, and the rubrene and BODIPY emulsion systems showed adequate light to record an ECL spectrum. ECL was also observed using oxalate as the co-reactant, which was dissolved in the aqueous continuous phase. The emulsions were stable for hours and showed a droplet size distribution that ranged from 275 to 764 nm, in accordance with dynamic light scattering data.


Langmuir | 2012

Spectroelectrochemical characterization of small hemoproteins adsorbed within nanostructured mesoporous ITO electrodes.

Delphine Schaming; Christophe Renault; Ryan T. Tucker; Stéphanie Lau-Truong; J. Aubard; Michael J. Brett; Véronique Balland; Benoît Limoges

3D nanostructured transparent indium tin oxide (ITO) electrodes prepared by glancing angle deposition (GLAD) were used for the spectroelectrochemical characterization of cytochrome c (Cyt c) and neuroglobin (Nb). These small hemoproteins, involved as electron-transfer partners in the prevention of apoptosis, are oppositely charged at physiological pH and can each be adsorbed within the ITO network under different pH conditions. The resulting modified electrodes were investigated by UV-visible absorption spectroscopy coupled with cyclic voltammetry. By using nondenaturating adsorption conditions, we demonstrate that both proteins are capable of direct electron transfer to the conductive ITO surface, sharing apparent standard potentials similar to those reported in solution. Preservation of the 3D protein structure upon adsorption was confirmed by resonance Raman (rR) spectroscopy. Analysis of the derivative cyclic voltabsorptograms (DCVA) monitored either in the Soret or the Q bands at scan rates up to 1 V s(-1) allowed us to investigate direct interfacial electron transfer kinetics. From the DCVA shape and scan rate dependences, we conclude that the interaction of Cyt c with the ITO surface is more specific than Nb, suggesting an oriented adsorption of Cyt c and a random adsorption of Nb on the ITO surface. At the same time, Cyt c appears more sensitive to the experimental adsorption conditions, and complete denaturation of Cyt c may occur as evidenced from cross-correlation of rR spectroscopy and spectroelectrochemistry.

Collaboration


Dive into the Christophe Renault's collaboration.

Top Co-Authors

Avatar

Richard M. Crooks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Allen J. Bard

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Fosdick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Dick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jiyeon Kim

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Karen Scida

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgan J. Anderson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge