Christophe Richard
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Richard.
The Lancet | 1999
Jean-Paul Renard; Sylvie Chastant; P. Chesné; Christophe Richard; Jacques Marchal; Nathalie Cordonnier; Pascale Chavatte; Xavier Vignon
BACKGROUND Adult somatic cloning by nuclear transfer is associated with high rate of perinatal mortality but there is still no evidence that nuclear transfer itself is responsible for these failures. We report on a longlasting defect linked to somatic cloning. METHODS Skin cells grown from an ear biopsy specimen from a 15-day-old calf were used as a source of nuclei. The donor animal was a clone of three females obtained from embryonic cells. Clinical examination, haematological, and biochemical profiles, and echocardiography of the somatic clone were done from birth to death. FINDINGS After 6 weeks of normal development, the somatic cloned calf had a sudden and rapid fall in lymphocyte count and a decrease in haemoglobin. The calf died on day 51 from severe anaemia. Necropsy revealed no abnormality except thymic atrophy and lymphoid hypoplasia. INTERPRETATION Somatic cloning may be the cause of long-lasting deleterious effects. Our observation should be taken into account in debates on reproductive cloning in human beings.
Physiological Genomics | 2009
Nadéra Mansouri-Attia; Julie Aubert; Pierrette Reinaud; Corinne Giraud-Delville; Géraldine Taghouti; Laurent Galio; Robin E. Everts; Séverine A. Degrelle; Christophe Richard; Isabelle Hue; Xiangzhong Yang; X. Cindy Tian; Harris A. Lewin; Jean-Paul Renard; Olivier Sandra
At implantation the endometrium undergoes modifications necessary for its physical interactions with the trophoblast as well as the development of the conceptus. We aim to identify endometrial factors and pathways essential for a successful implantation in the caruncular (C) and the intercaruncular (IC) areas in cattle. Using a 13,257-element bovine oligonucleotide array, we established expression profiles at day 20 of the estrous cycle or pregnancy (implantation), revealing 446 and 1,295 differentially expressed genes (DEG) in C and IC areas, respectively (false discovery rate = 0.08). The impact of the conceptus was higher on the immune response function in C but more prominent on the regulation of metabolism function in IC. The C vs. IC direct comparison revealed 1,177 and 453 DEG in cyclic and pregnant animals respectively (false discovery rate = 0.05), with a major impact of the conceptus on metabolism and cell adhesion. We selected 15 genes including C11ORF34, CXCL12, CXCR4, PLAC8, SCARA5, and NPY and confirmed their differential expression by quantitative RT-PCR. The cellular localization was analyzed by in situ hybridization and, upon pregnancy, showed gene-specific patterns of cell distribution, including a high level of expression in the luminal epithelium for C11ORF34 and MX1. Using primary cultures of bovine endometrial cells, we identified PTN, PLAC8, and CXCL12 as interferon-tau (IFNT) target genes and MSX1 and CXCR7 as IFNT-regulated genes, whereas C11ORF34 was not an IFNT-regulated gene. Our transcriptomic data provide novel molecular insights accounting for the biological functions related to the C or IC endometrial areas and may contribute to the identification of potential biomarkers for normal and perturbed early pregnancy.
Cloning and Stem Cells | 2004
Pascale Chavatte-Palmer; D. Remy; N. Cordonnier; Christophe Richard; H. Issenman; P. Laigre; Y. Heyman; J.-P. Mialot
The procedure of somatic cloning is associated with important losses during pregnancy and in the perinatal period, reducing the overall efficacy to less than 5% in most cases. A mean of 30% of the cloned calves die before reaching 6 months of age with a wide range of pathologies, including, for the most common, respiratory failure, abnormal kidney development, liver steatosis. Heart and liver weight in relation to body weight are also increased. Surviving animals, although mostly clinically normal, differ from controls obtained by artificial insemination (AI) within the first 1-2 months, to become undistinguishable from them thereafter. Hemoglobin concentrations, for instance, are lower, and leptin concentrations are elevated. In response to the lack of prospective studies addressing the health of adult clones, a long-term, 3-4-year study is currently being conducted to assess the health of mature bovine clones at INRA. Preliminary results over 1 year of study do not show any statistical difference between groups for hematological parameters.
Current Biology | 2014
Laurent Boulanger; Maëlle Pannetier; Laurence Gall; Aurélie Allais-Bonnet; Maëva Elzaiat; Daniel Le Bourhis; Nathalie Daniel; Christophe Richard; Corinne Cotinot; Norbert B. Ghyselinck; Eric Pailhoux
The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter.
Cloning and Stem Cells | 2004
Y. Heyman; Christophe Richard; Heriberto Rodriguez-Martinez; Giovanna Lazzari; Pascale Chavatte-Palmer; Xavier Vignon; Cesare Galli
This paper presents information on the evolution of sets of cloned heifers of Holstein breed in comparison to that of control heifers derived from artificial insemination (AI) in the same farm, as well as data on a set of cloned bulls and their semen characteristics. Preliminary observations on a group of calves sired by a cloned bull and offspring of cloned females are reported. Mean birth weight in the clone group (50 females) was statistically higher than that of 68 contemporary female controls obtained by AI (49.27 +/- 10.98 vs. 40.57 +/- 5.55 kg, respectively, p < 0.05). Growth rate was within normal values for Holstein heifers (from 0.7 to 0.8 kg/day) and daily gain was not influenced by the high or low birth weight of clones. Within animals of the same clone, variability of daily gain was reduced compared to their control counterparts. Semen production from three cloned bulls was within the parameters expected for young bull of the same age. A direct comparison of morphological analysis was made between the frozen thawed semen of the donor bull and of his three clones collected at the same age. The overall semen picture appeared within acceptable limits and the clones presented similar percentages of sperm abnormalities (80% of morphologically normal spermatozoa) as the donor. These preliminary results suggest no deleterious effect of cloning on the semen picture of cloned sires. Frozen semen from one clone bull was used for an AI trial, resulting in 65% pregnancies, 25 live calves were naturally delivered. Concerning the offspring of both female and male clones, the phenotypical and clinical observation of the calves in the first week of age did not reveal any clinical abnormality, suggesting that the deviations observed in clones are not transmitted to the progeny.
PLOS ONE | 2012
Séverine A. Degrelle; Florence Jaffrézic; Evelyne Campion; Kim-Anh Lê Cao; Daniel Le Bourhis; Christophe Richard; Nathalie Rodde; Renaud Fleurot; Robin E. Everts; Jérôme Lecardonnel; Y. Heyman; Xavier Vignon; Xiangzhong Yang; Xiuchun C. Tian; Harris A. Lewin; Jean-Paul Renard; Isabelle Hue
Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.
Biology of Reproduction | 2012
Caroline Eozenou; Anaı̈s Vitorino Carvalho; Niamh Forde; Corinne Giraud-Delville; Laurence Gall; P. Lonergan; Aurélie Auguste; Gilles Charpigny; Christophe Richard; Maëlle Pannetier; Olivier Sandra
ABSTRACT FOXL2, a winged-helix/forkhead domain transcription factor, is a key gene involved in the differentiation and biological functions of the ovary. In a recent transcriptomic analysis, we found that FOXL2 expression in bovine caruncular endometrium was different from that in intercaruncular endometrium. In order to gain new insights into FOXL2 in this tissue, we determined the expression of this transcription factor during the estrous cycle and the establishment of pregnancy in cattle. The endometrial expression of FOXL2 did not vary during maternal recognition of pregnancy (Days 16–20). Using an in vivo bovine model and primary cell cultures, we showed that FOXL2 was not an interferon-tau target gene. Both FOXL2 transcript and protein were expressed from Day 5 to Day 20 of the estrous cycle, and their levels showed a significant increase during the luteolytic phase. A 2-day progesterone supplementation in heifers led to a clear down-regulation of FOXL2 protein levels, suggesting the negative impact of progesterone on FOXL2 expression. Immunohistochemistry data revealed the localization of FOXL2 in endometrial stromal and glandular cells. FOXL2 subcellular distribution was shown to be nuclear in endometrial samples collected during the luteolytic period, while it was not detected in nuclei during the luteal phase and at implantation. Collectively, our findings provide the first evidence that FOXL2 is involved in the regulation of endometrial tissue physiology.
Theriogenology | 2011
Fabienne Constant; Sylvaine Camous; Pascale Chavatte-Palmer; Y. Heyman; N.M. de Sousa; Christophe Richard; J.F. Beckers; Michel Guillomot
Somatic nuclear transfer (NT) in cattle is often accompanied by severe placental anomalies, hypertrophy, and hydrallantois, which induce a high rate of pregnancy losses throughout gestation. These placental deficits are associated with an abnormal increase of the maternal plasma levels of pregnancy-associated glycoprotein (PAG), produced by the trophoblastic binucleate cells (BNC) of the placenta. The objective of this study was to analyze the origin of the abnormally elevated PAG concentrations in the peripheral circulation of NT recipients during pathological pregnancies. Concentrations of PAG were measured both in maternal blood, in chorionic and cotyledonary tissular extracts from control recipients (after artificial insemination, AI, or in vitro fertilization, IVF) and clone recipients on Day 32, Day 62, and during the third trimester of gestation. Three different radioimmunoassay (RIA) systems were used. One homologous RIA for PSP60, similar to bovine PAG-1 (PAG(67 kDa)), and two heterologous RIA with PAG(67 kDa) as standard and tracer, and antisera anti-caprine PAG (AS#706 and AS#708). Circulating and tissular concentrations of bovine placental lactogen (bPL), a glycoprotein also produced by BNC, were determined by RIA at the same stages. The number of BNC in the placental tissues was determined by cell counting after immunostaining with anti PSP60 antibody on tissue sections from control and NT pregnancies. Maternal plasma PAG concentrations were not different among groups on Day 32, but they were significantly higher in NT than in control pregnancies on Day 62 with all three RIA and during the third trimester with two RIA (RIA-PSP60 and RIA with AS#708). Circulating bPL concentrations were undetectable on Days 32 and 62 and were not different in the third trimester between NT and control pregnancies. Tissular amounts of PAG on total proteins were not different between the two groups at all stages studied. No difference was determined in the percentage of PSP60-positive BNC in placental tissues between controls and NT on Day 62 and during the third trimester of pregnancy. Western blots of tissular extracts from placenta showed no major molecular weight changes of PAG in NT pregnancies compared to controls. No differences in maternal circulation concentrations or tissular content of bPL were observed between control and NT pregnancies. In conclusion, the specific increase of PAG in maternal plasma concentrations during abnormal NT pregnancies do not result from a higher proportion of BNC, or an increased protein expression of PAG and could be due to changes in the composition of terminal glycosylation which result into a clearance decrease of PAG from the circulation.
Animal | 2007
Yvan Heyman; P. Chavatte-Palmer; Gilles Fromentin; Valérie Berthelot; Catherine Jurie; P. Bas; Michel Dubarry; J. P. Mialot; Dominique Remy; Christophe Richard; Lionel Martignat; Xavier Vignon; Jean Paul Renard
A multidisciplinary research programme was developed to get a scientific expertise for the quality assessment of products obtained from cloned livestock. Thirty-seven bovine Holstein female clones of five different genotypes and their products were analysed in comparison with 38 control animals obtained by conventional artificial insemination and raised under the same conditions at the same experimental farm. Animal evaluation included over 150 criteria and more than 10 000 measurements to check the physiological status and health over a 3-year period. All the parameters studied were in the normal range for age and breed, but some significant differences were detected between clone and control groups in terms of delayed onset of puberty in clones, higher neutrophil counts in haematology or lower biochemical plasma concentrations of gamma glutamyl transferase. Milk and meat analyses were conformable to expected values. We, however, found some differences in fatty acid (FA) composition of milk and muscle suggesting a possible deviation in lipid metabolism as assessed by higher delta-9 desaturase activity indexes in both milk and muscles from clones compared with controls. Repeated muscle biopsies in the semitendinosus muscle of the same animals demonstrated a higher oxidative activity in muscle of young clones (8 months of age) compared with controls, suggesting a delayed muscle maturation in clones. Nutritional evaluation of milk and meat using the rat feeding trials did not show any difference between clone and control products for food intake, growth rate, body composition of the rats, nor for possible allergenicity. Possible reactivation of bovine endogenous retroviruses (BERVs) was analysed and compared between normal and cloned cattle. As expected, these BERV sequences are not transcribed and no RNA was detected in the blood of clones, donor animals or controls; therefore, it may be assumed that the sanitary risk associated with BERV sequences is not higher in cattle derived from somatic nuclear transfer than in cattle born from conventional reproduction. Our results confirm that the quality and safety of products (milk and meat) from adult and clinically healthy cloned cattle is globally similar to normal animals. However, from a strictly biological point of view, the slightly delayed maturation we observed in the muscle of clones together with some marginal differences identified in FA composition of both muscle and milk, point to the need for more refined analysis to totally exclude any risks from the consumption of those products.
PLOS ONE | 2015
Laura Peralta; Eve Mourier; Christophe Richard; Gilles Charpigny; Thibaut Larcher; Dora Aït-Belkacem; Naveen K. Balla; Sophie Brasselet; Mickael Tanter; Marie Muller; Pascale Chavatte-Palmer
Prematurity affects 11% of the births and is the main cause of infant mortality. On the opposite case, the failure of induction of parturition in the case of delayed spontaneous birth is associated with fetal suffering. Both conditions are associated with precocious and/or delayed cervical ripening. Quantitative and objective information about the temporal evolution of the cervical ripening may provide a complementary method to identify cases at risk of preterm delivery and to assess the likelihood of successful induction of labour. In this study, the cervical stiffness was measured in vivo in pregnant sheep by using Shear Wave Elastography (SWE). This technique assesses the stiffness of tissue through the measurement of shear waves speed (SWS). In the present study, 9 pregnant ewes were used. Cervical ripening was induced at 127 days of pregnancy (term: 145 days) by dexamethasone injection in 5 animals, while 4 animals were used as control. Elastographic images of the cervix were obtained by two independent operators every 4 hours during 24 hours after injection to monitor the cervical maturation induced by the dexamethasone. Based on the measurements of SWS during vaginal ultrasound examination, the stiffness in the second ring of the cervix was quantified over a circular region of interest of 5 mm diameter. SWS was found to decrease significantly in the first 4–8 hours after dexamethasone compared to controls, which was associated with cervical ripening induced by dexamethasone (from 1.779 m/s ± 0.548 m/s, p < 0.0005, to 1.291 m/s ± 0.516 m/s, p < 0.000). Consequently a drop in the cervical elasticity was quantified too (from 9.5 kPa ± 0.9 kPa, p < 0.0005, to 5.0 kPa ± 0.8 kPa, p < 0.000). Moreover, SWE measurements were highly reproducible between both operators at all times. Cervical ripening induced by dexamethasone was confirmed by the significant increase in maternal plasma Prostaglandin E2 (PGE2), as evidenced by the assay of its metabolite PGEM. Histological analyses and two-photon excitation microscopy, combining both Second Harmonic Generation (SHG) and Two-photon Fluorescence microscopy (2PF) contrasts, were used to investigate, at the microscopic scale, the structure of cervical tissue. Results show that both collagen and 2PF-active fibrillar structures could be closely related to the mechanical properties of cervical tissue that are perceptible in elastography. In conclusion, SWE may be a valuable method to objectively quantify the cervical stiffness and as a complementary diagnostic tool for preterm birth and for labour induction success.