Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Salon is active.

Publication


Featured researches published by Christophe Salon.


Plant Physiology | 2008

Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending on the Nitrogen Source in Medicago truncatula

Sandrine Ruffel; Sandrine Balzergue; Pascal Tillard; Christian Jeudy; Marie Laure Martin-Magniette; Margaretha J. van der Merwe; Klementina Kakar; Jérôme Gouzy; Alisdair R. Fernie; Michael K. Udvardi; Christophe Salon; Alain Gojon; Marc Lepetit

Legumes can acquire nitrogen (N) from NO3−, NH4+, and N2 (through symbiosis with Rhizobium bacteria); however, the mechanisms by which uptake and assimilation of these N forms are coordinately regulated to match the N demand of the plant are currently unknown. Here, we find by use of the split-root approach in Medicago truncatula plants that NO3− uptake, NH4+ uptake, and N2 fixation are under general control by systemic signaling of plant N status. Indeed, irrespective of the nature of the N source, N acquisition by one side of the root system is repressed by high N supply to the other side. Transcriptome analysis facilitated the identification of over 3,000 genes that were regulated by systemic signaling of the plant N status. However, detailed scrutiny of the data revealed that the observation of differential gene expression was highly dependent on the N source. Localized N starvation results, in the unstarved roots of the same plant, in a strong compensatory up-regulation of NO3− uptake but not of either NH4+ uptake or N2 fixation. This indicates that the three N acquisition pathways do not always respond similarly to a change in plant N status. When taken together, these data indicate that although systemic signals of N status control root N acquisition, the regulatory gene networks targeted by these signals, as well as the functional response of the N acquisition systems, are predominantly determined by the nature of the N source.


Plant Physiology | 2005

Dynamics of Exogenous Nitrogen Partitioning and Nitrogen Remobilization from Vegetative Organs in Pea Revealed by 15N in Vivo Labeling throughout Seed Filling

Séverine Schiltz; Nathalie Munier-Jolain; Christian Jeudy; Judith Burstin; Christophe Salon

The fluxes of (1) exogenous nitrogen (N) assimilation and (2) remobilization of endogenous N from vegetative plant compartments were measured by 15N labeling during the seed-filling period in pea (Pisum sativum L. cv Caméor), to better understand the mechanism of N remobilization. While the majority (86%) of exogenous N was allocated to the vegetative organs before the beginning of seed filling, this fraction decreased to 45% at the onset of seed filling, the remainder being directed to seeds. Nitrogen remobilization from vegetative parts contributed to 71% of the total N in mature seeds borne on the first two nodes (first stratum). The contribution of remobilized N to total seed N varied, with the highest proportion at the beginning of filling; it was independent of the developmental stage of each stratum of seeds, suggesting that remobilized N forms a unique pool, managed at the whole-plant level and supplied to all filling seeds whatever their position on the plant. Once seed filling starts, N is remobilized from all vegetative organs: 30% of the total N accumulated in seeds was remobilized from leaves, 20% from pod walls, 11% from roots, and 10% from stems. The rate of N remobilization was maximal when seeds of all the different strata were filling, consistent with regulation according to the N demand of seeds. At later stages of seed filling, the rate of remobilization decreases and may become controlled by the amount of residual N in vegetative tissues.


Plant and Soil | 2002

Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.)

Anne-Sophie Voisin; Christophe Salon; Nathalie Munier-Jolain; Bertrand Ney

The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha−1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha−1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha−1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m−2 degree-day−1, equivalent to 7 kg N ha−1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate.


Plant and Soil | 2002

Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.).

Anne-Sophie Voisin; Christophe Salon; Nathalie Munier-Jolain; Bertrand Ney

The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha−1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha−1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.


New Phytologist | 2010

Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses.

Christian Jeudy; Sandrine Ruffel; Pascal Tillard; Anne Lise Santoni; Sylvain Morel; Etienne-Pascal Journet; Gérard Duc; Alain Gojon; Marc Lepetit; Christophe Salon

Adaptation of Medicago truncatula to local nitrogen (N) limitation was investigated to provide new insights into local and systemic N signaling. The split-root technique allowed a characterization of the local and systemic responses of NO(3)(-) or N(2)-fed plants to localized N limitation. (15)N and (13)C labeling were used to monitor plant nutrition. Plants expressing pMtENOD11-GUS and the sunn-2 hypernodulating mutant were used to unravel mechanisms involved in these responses. Unlike NO(3)(-)-fed plants, N(2)-fixing plants lacked the ability to compensate rapidly for a localized N limitation by up-regulating the N(2)-fixation activity of roots supplied elsewhere with N. However they displayed a long-term response via a growth stimulation of pre-existing nodules, and the generation of new nodules, likely through a decreased abortion rate of early nodulation events. Both these responses involve systemic signaling. The latter response is abolished in the sunn mutant, but the mutation does not prevent the first response. Local but also systemic regulatory mechanisms related to plant N status regulate de novo nodule development in Mt, and SUNN is required for this systemic regulation. By contrast, the stimulation of nodule growth triggered by systemic N signaling does not involve SUNN, indicating SUNN-independent signaling.


Journal of Experimental Botany | 2010

Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits

Nadia Bertin; Pierre Martre; Michel Génard; B. Quilot; Christophe Salon

Detailed information has arisen from research at gene and cell levels, but it is still incomplete in the context of a quantitative understanding of whole plant physiology. Because of their integrative nature, process-based simulation models can help to bridge the gap between genotype and phenotype and assist in deconvoluting genotype-by-environment (GxE) interactions for complex traits. Indeed, GxE interactions are emergent properties of simulation models, i.e. unexpected properties generated by complex interconnections between subsystem components and biological processes. They co-occur in the system with synergistic or antagonistic effects. In this work, different kinds of GxE interactions are illustrated. Approaches to link model parameters to genes or quantitative trait loci (QTL) are briefly reviewed. Then the analysis of GxE interactions through simulation models is illustrated with an integrated model simulation of peach (Prunus persica (L.) Batsch) fruit mass and sweetness, and with a model of wheat (Triticum aestivum L.) grain yield and protein concentration. This paper suggests that the management of complex traits such as fruit and grain quality may become possible, thanks to the increasing knowledge concerning the genetic and environmental regulation of organ size and composition and to the development of models simulating the complex aspects of metabolism and biophysical behaviours at the plant and organ levels.


New Phytologist | 2011

Modelling the size and composition of fruit, grain and seed by process-based simulation models.

Pierre Martre; Nadia Bertin; Christophe Salon; Michel Génard

Understanding what determines the size and composition of fruit, grain and seed in response to the environment and genotype is challenging, as these traits result from several linked processes controlled at different levels of organization, from the subcellular to the crop level, with subtle interactions occurring at or between the levels of organization. Process-based simulation models (PBSMs) implement algorithms to simulate metabolic and biophysical aspects of cell, tissue and organ behaviour. In this review, fruit, grain and seed PBSMs describing the main phases of growth, development and storage metabolism are discussed. From this concurrent work, it is possible to identify generic storage organ processes which can be modelled similarly for fruit, grain and seed. Spatial heterogeneity at the tissue and whole-plant level is found to be a key consideration in modelling the effects of the environment and genotype on fruit, grain and seed end-use value. In the future, PBSMs may well become the main link between studies at the molecular and whole-plant levels. To bridge this phenotype-to-genotype gap, future models need to remain plastic without becoming overparameterized.


European Journal of Agronomy | 2003

Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity

Virginie Bourion; Isabelle Lejeune-Hénaut; Nathalie Munier-Jolain; Christophe Salon

Like most plants, pea (Pisum sativum L.) becomes tolerant to frost if it is first exposed to low non-freezing temperatures, a process known as cold acclimation. Cold acclimation is a complex process involving many physiological and metabolic changes. Two spring dry peas, two winter dry peas and one winter forage line were exposed to cold temperature in a controlled environment in two experiments, one using low light intensity and the other regular light intensity. Plants were harvested throughout the experiment and dry matter accumulation, water content, soluble and insoluble sugar concentrations were determined from shoot and root samples. Cold acclimation did not occur when temperatures were low if light intensity was low, even in winter peas. In contrast, with regular light intensity, the winter peas acquired more freezing tolerance than spring peas and a close relationship was found between the soluble sugar concentration of leaves just before the frost and the degree of freezing tolerance obtained by the different genotypes. Relationships between freezing tolerance and carbon partitioning between shoot and roots are discussed.


Plant and Soil | 2010

The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea

Anne-Sophie Voisin; Nathalie Munier-Jolain; Christophe Salon

While many studies have focussed on nodule organogenesis at the molecular, cellular and organ scales, little information is available concerning the establishment and growth of nodules at the whole plant level. Our aim was to identify specific patterns and quantitative determinants of nodule number and biomass in peas grown under contrasting environmental conditions (variation of light intensity, nitrate supply and inoculation date). Using mutants impaired in the autoregulation of nodulation (AON) together with an integrated analysis of plant N nutrition, we revealed the respective roles of the AON and N signalling pathways in the regulation of nodulation. Nodulation was first repressed by a seed-borne AON independent signal. Then, nodulation was initiated under limiting N conditions through plant-N signalling and AON-dependent pathways. The number of nodules formed during the first nodulation wave was linearly related to plant growth, through both AON dependent and N-signalling pathways. Nodule biomass and number were shown to be co-regulated through an AON-independent mechanism. As a tight adaptation to the environment, our results highlight the finely-tuned regulation of nodule number as the main component of the whole plant regulation of N2 fixation, adapting precisely to environmental conditions and thus meeting plant N needs with minimal C costs.


Functional Plant Biology | 2005

How does temperature affect C and N allocation to the seeds during the seed-filling period in pea? Effect on seed nitrogen concentration

Annabelle Larmure; Christophe Salon; Nathalie Munier-Jolain

The effect of moderate temperature on seed N concentration during the seed-filling period was evaluated in pea (Pisum sativum L.) kept in growth cabinets and the relation between plant assimilate availability and the variation of seed N concentration with temperature was investigated. Seed N concentration of pea was significantly lowered when temperature during the seed-filling period decreased from a day / night temperature of 25 / 20°C to 15 / 10°C. Our results demonstrate that during the seed-filling period mechanisms linked with assimilate availability can modify seed N accumulation rate and / or seed-filling duration between 25 / 20°C and 15 / 10°C. At the lower temperature (15 / 10°C), an increased C availability resulting from an enhanced carbon fixation per degree-day allowed new competing vegetative sinks to grow as pea is an indeterminate plant. Consequently N availability to filling seeds was reduced. Because the rate of seed N accumulation per degree-day mainly depends on N availability to filling seeds, the rate of seed N accumulation was lower at the low temperature of our study (15 / 10°C) than at 25 / 20°C while seed growth rate per degree-day remains unaffected, consequently seed N concentration was reduced. Concomitantly, the increased C availability at the lower temperature prolonged the duration of the seed-filling period.

Collaboration


Dive into the Christophe Salon's collaboration.

Top Co-Authors

Avatar

Nathalie Munier-Jolain

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne-Sophie Voisin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christian Jeudy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gérard Duc

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Delphine Moreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marion Prudent

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Virginie Bourion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Mougel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabelle Larmure

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge