Christophe Six
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Six.
Genome Biology | 2007
Christophe Six; Jean-Claude Thomas; Laurence Garczarek; Martin Ostrowski; Alexis Dufresne; Nicolas Blot; David J. Scanlan; Frédéric Partensky
BackgroundMarine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism.ResultsBy carefully comparing the Synechococcus genomes, we have retrieved candidate genes potentially required for the synthesis of phycobiliproteins in each pigment type. This includes linker polypeptides, phycobilin lyases and a number of novel genes of uncharacterized function. Interestingly, strains belonging to a given pigment type have similar phycobilisome gene complements and organization, independent of the core genome phylogeny (as assessed using concatenated ribosomal proteins). While phylogenetic trees based on concatenated allophycocyanin protein sequences are congruent with the latter, those based on phycocyanin and phycoerythrin notably differ and match the Synechococcus pigment types.ConclusionWe conclude that the phycobilisome core has likely evolved together with the core genome, while rods must have evolved independently, possibly by lateral transfer of phycobilisome rod genes or gene clusters between Synechococcus strains, either via viruses or by natural transformation, allowing rapid adaptation to a variety of light niches.
Journal of Bacteriology | 2006
Craig Everroad; Christophe Six; Frédéric Partensky; Jean-Claude Thomas; Julia Holtzendorff; A. Michelle Wood
Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII alpha- and beta-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) alpha chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.
The ISME Journal | 2014
Justine Pittera; Florian Humily; Maxine Thorel; Daphné Grulois; Laurence Garczarek; Christophe Six
Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation.
Frontiers in Microbiology | 2012
Daniella Mella-Flores; Christophe Six; Morgane Ratin; Frédéric Partensky; Christophe Boutte; Gildas Le Corguillé; Dominique Marie; Nicolas Blot; Priscillia Gourvil; Christian Kolowrat; Laurence Garczarek
Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO2 fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field.
Journal of Bacteriology | 2005
Christophe Six; Jean-Claude Thomas; Laurent Thion; Yves Lemoine; Frank Zal; Frédéric Partensky
The recent availability of the whole genome of Synechococcus sp. strain WH8102 allows us to have a global view of the complex structure of the phycobilisomes of this marine picocyanobacterium. Genomic analyses revealed several new characteristics of these phycobilisomes, consisting of an allophycocyanin core and rods made of one type of phycocyanin and two types of phycoerythrins (I and II). Although the allophycocyanin appears to be similar to that found commonly in freshwater cyanobacteria, the phycocyanin is simpler since it possesses only one complete set of alpha and beta subunits and two rod-core linkers (CpcG1 and CpcG2). It is therefore probably made of a single hexameric disk per rod. In contrast, we have found two novel putative phycoerythrin-associated linker polypeptides that appear to be specific for marine Synechococcus spp. The first one (SYNW2000) is unusually long (548 residues) and apparently results from the fusion of a paralog of MpeC, a phycoerythrin II linker, and of CpeD, a phycoerythrin-I linker. The second one (SYNW1989) has a more classical size (300 residues) and is also an MpeC paralog. A biochemical analysis revealed that, like MpeC, these two novel linkers were both chromophorylated with phycourobilin. Our data suggest that they are both associated (partly or totally) with phycoerythrin II, and we propose to name SYNW2000 and SYNW1989 MpeD and MpeE, respectively. We further show that acclimation of phycobilisomes to high light leads to a dramatic reduction of MpeC, whereas the two novel linkers are not significantly affected. Models for the organization of the rods are proposed.
Plant Physiology | 2011
Nicolas Blot; Daniella Mella-Flores; Christophe Six; Gildas Le Corguillé; Christophe Boutte; Anne Peyrat; Annabelle Monnier; Morgane Ratin; Priscillia Gourvil; Douglas A. Campbell; Laurence Garczarek
Marine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H2O2) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 μm H2O2. Depending upon light conditions and H2O2 concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances.
The ISME Journal | 2008
Laurence Garczarek; Alexis Dufresne; Nicolas Blot; Amanda M. Cockshutt; Anne Peyrat; Douglas A. Campbell; Ludovic Joubin; Christophe Six
In cyanobacteria, the D1 protein of photosystem II (PSII) is encoded by the psbA multigene family. In most freshwater strains, a D1:1 isoform of this protein is exchanged for a D1:2 isoform in response to various stresses, thereby altering PSII photochemistry. To investigate PSII responses to stress in marine Synechococcus, we acclimated cultures of the WH7803 strain to different growth irradiances and then exposed them to high light (HL) or ultraviolet (UV) radiation. Measurement of PSII quantum yield and quantitation of the D1 protein pool showed that HL-acclimated cells were more resistant to UV light than were low light- (LL) or medium light- (ML) acclimated cells. Both UV and HL induced the expression of psbA genes encoding D1:2 and the repression of the psbA gene encoding D1:1. Although three psbA genes encode identical D1:2 isoforms in Synechococcus sp. WH7803, only one was strongly stress responsive in our treatment conditions. Examination of 11 marine Synechococcus genomic sequences identified up to six psbA copies per genome, with always a single gene encoding D1:1. In phylogenetic analyses, marine Synechococcus genes encoding D1:1 clustered together, while the genes encoding D1:2 grouped by genome into subclusters. Moreover, examination of the genomic environment of psbA genes suggests that the D1:2 genes are hotspots for DNA recombination. Collectively, our observations suggest that while all psbA genes follow a concerted evolution within each genome, D1:2 coding genes are subject to intragenome homogenization most probably mediated by gene conversion.
Journal of Phycology | 2013
Fanny Noisette; Gwendoline Duong; Christophe Six; Dominique Davoult; Sophie Martin
Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free‐living coralline alga Lithothamnion corallioides (“maerl”) and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 μatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 μatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 μatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.
The ISME Journal | 2017
David Demory; Laure Arsenieff; Nathalie Simon; Christophe Six; Fabienne Rigaut-Jalabert; Dominique Marie; Pei Ge; Estelle Bigeard; Stéphan Jacquet; Antoine Sciandra; Olivier Bernard; Sophie Rabouille; Anne-Claire Baudoux
The genus Micromonas comprises phytoplankton that show among the widest latitudinal distributions on Earth, and members of this genus are recurrently infected by prasinoviruses in contrasted thermal ecosystems. In this study, we assessed how temperature influences the interplay between the main genetic clades of this prominent microalga and their viruses. The growth of three Micromonas strains (Mic-A, Mic-B, Mic-C) and the stability of their respective lytic viruses (MicV-A, MicV-B, MicV-C) were measured over a thermal range of 4–32.5 °C. Similar growth temperature optima (Topt) were predicted for all three hosts but Mic-B exhibited a broader thermal tolerance than Mic-A and Mic-C, suggesting distinct thermoacclimation strategies. Similarly, the MicV-C virus displayed a remarkable thermal stability compared with MicV-A and MicV-B. Despite these divergences, infection dynamics showed that temperatures below Topt lengthened lytic cycle kinetics and reduced viral yield and, notably, that infection at temperatures above Topt did not usually result in cell lysis. Two mechanisms operated depending on the temperature and the biological system. Hosts either prevented the production of viral progeny or maintained their ability to produce virions with no apparent cell lysis, pointing to a possible switch in the viral life strategy. Hence, temperature changes critically affect the outcome of Micromonas infection and have implications for ocean biogeochemistry and evolution.
The ISME Journal | 2017
Justine Pittera; Frédéric Partensky; Christophe Six
Marine Synechococcus play a key role in global oceanic primary productivity. Their wide latitudinal distribution has been attributed to the occurrence of lineages adapted to distinct thermal niches, but the physiological and molecular bases of this ecotypic differentiation remain largely unknown. By comparing six strains isolated from different latitudes, we showed that the thermostability of their light-harvesting complexes, called phycobilisomes (PBS), varied according to the average sea surface temperature at strain isolation site. Comparative analyses of thermal unfolding curves of the three phycobiliproteins (PBP) constituting PBS rods suggested that the differences in thermostability observed on whole PBSs relied on the distinct molecular flexibility and stability of their individual components. Phycocyanin was the least thermostable of all rod PBP, constituting a fragility point of the PBS under heat stress. Amino-acid composition analyses and structural homology modeling notably revealed the occurrence of two amino-acid substitutions, which might have a role in the observed differential thermotolerance of this phycobiliprotein among temperature ecotypes. We hypothesize that marine Synechococcus ancestors occurred first in warm niches and that during the colonization of cold, high latitude thermal niches, their descendants have increased the molecular flexibility of PBP to maintain optimal light absorption capacities, this phenomenon likely resulting in a decreased stability of these proteins. This apparent thermoadaptability of marine Synechococcus has most probably contributed to the remarkable ubiquity of these picocyanobacteria in the ocean.