Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Vandier is active.

Publication


Featured researches published by Christophe Vandier.


Molecular Cancer Therapeutics | 2006

Identification of SK3 channel as a new mediator of breast cancer cell migration

Marie Potier; Virginie Joulin; Sébastien Roger; Pierre Besson; Marie-Lise Jourdan; Jean-Yves LeGuennec; Philippe Bougnoux; Christophe Vandier

Potassium channels have been involved in epithelial tumorigenesis but the role of small-conductance Ca2+-activated K+ channels is unknown. We report here that small-conductance Ca2+-activated K+ channels are expressed in a highly metastasizing mammary cancer cell line, MDA-MB-435s. Patch-clamp recordings showed typical small-conductance Ca2+-activated K+ channel–mediated currents sensitive to apamin, 4-aminopyridine, and tetraethylammonium. Moreover, the cells displayed a high intracellular calcium concentration, which was decreased after 24 hours of apamin treatment. By regulating membrane potential and intracellular calcium concentration, these channels were involved in MDA-MB-435s cell migration, but not in proliferation. Only SK3 protein expression was observed in these cells in contrast to SK2, which was expressed both in cancer and noncancer cell lines. Whereas small interfering RNA directed against SK3 almost totally abolished MDA-MB-435s cell migration, transient expression of SK3 increased migration of the SK3-deficient cell lines, MCF-7 and 184A1. SK3 channel was solely expressed in tumor breast biopsies and not in nontumor breast tissues. Thus, SK3 protein channel seems to be a new mediator of breast cancer cell migration and represents a potential target for a new class of anticancer agents. [Mol Cancer Ther 2006;5(11):2946–53]


Cancer Research | 2013

Pivotal role of the lipid raft SK3-Orai1 complex in human cancer cell migration and bone metastases

Aurélie Chantôme; Marie Potier-Cartereau; Lucie Clarysse; Gaëlle Fromont; Séverine Marionneau-Lambot; Maxime Guéguinou; Jean-Christophe Pagès; Christine Collin; Thibauld Oullier; Alban Girault; Flavie Arbion; Jean-Pierre Haelters; Michelle Pinault; Pierre Besson; Virginie Joulin; Philippe Bougnoux; Christophe Vandier

The SK3 channel, a potassium channel, was recently shown to control cancer cell migration, a critical step in metastasis outgrowth. Here, we report that expression of the SK3 channel was markedly associated with bone metastasis. The SK3 channel was shown to control constitutive Ca(2+) entry and cancer cell migration through an interaction with the Ca(2+) channel Orai1. We found that the SK3 channel triggers an association with the Orai1 channel within lipid rafts. This localization of an SK3-Orai1 complex seemed essential to control cancer cell migration. This suggests that the formation of this complex in lipid rafts is a gain-of-function, because we showed that none of the individual proteins were able to promote the complete phenotype. We identified the alkyl-lipid Ohmline as a disrupting agent for SK3-Orai1 lipid raft localization. Upon Ohmline treatment, the SK3-Orai1 complex moved away from lipid rafts, and SK3-dependent Ca(2+) entry, migration, and bone metastases were subsequently impaired. The colocalization of SK3 and Orai1 in primary human tumors and bone metastases further emphasized the clinical relevance of our observations. Targeting SK3-Orai1 in lipid rafts may inaugurate innovative approaches to inhibit bone metastases.


Cell Death and Disease | 2013

Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity

Marina Bury; A Girault; Mégalizzi; Sabine Spiegl-Kreinecker; Mathieu; Walter Berger; Antonio Evidente; Alexander Kornienko; Philippe Gailly; Christophe Vandier; Robert Kiss

Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca2+-activated K+ channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle

Marcie Berger; Christophe Vandier; Pierre Bonnet; William F. Jackson; Nancy J. Rusch

Decreases in intracellular pH (pHi) potently dilate coronary resistance arteries but constrict small pulmonary arteries. To define the ionic mechanisms of these responses, this study investigated whether acute decreases in pHi differentially regulate K+ currents in single vascular smooth muscle (VSM) cells isolated from rat coronary and pulmonary resistance arteries. In patch-clamp studies, whole cell K+ currents were elicited by 10-mV depolarizing steps between -60 and 0 mV in VSM cells obtained from 50- to 150-micrometers-OD arterial branches, and pHi was lowered by altering the NH4Cl gradient across the cell membrane. Progressively lowering pHi from calculated values of 7.0 to 6.7 and 6.4 increased the peak amplitude of K+ current in coronary VSM cells by 15 +/- 5 and 23 +/- 3% but reduced K+ current in pulmonary VSM cells by 18 +/- 3 and 21 +/- 3%, respectively. These changes were reversed by returning cells to the control pHi of 7.0 and were eliminated by dialyzing cells with pipette solution containing 50 mmol/l HEPES to buffer NH4Cl-induced changes in pHi. Pharmacological block of ATP-sensitive K+ channels and Ca2+-activated K+ channels by 1 micromol/l glibenclamide and 100 nmol/l iberiotoxin, respectively, did not prevent changes in K+ current levels induced by acidotic pHi. However, block of voltage-gated K+ channels by 3 mmol/l 4-aminopyridine abolished acidosis-induced changes in K+ current amplitudes in both VSM cell types. Interestingly, alpha-dendrotoxin (100 nmol/l), which blocks only select subtypes of voltage-gated K+ channels, abolished the acidosis-induced decrease in K+ current in pulmonary VSM cells but did not affect the acidosis-induced increase in K+ current observed in coronary VSM cells. These findings suggest that opposing, tissue-specific effects of pHi on distinct subtypes of voltage-gated K+ channels in coronary and pulmonary VSM membranes may differentially regulate vascular reactivity in these two circulations under conditions of acidotic stress.


Experimental Cell Research | 2009

KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility.

Aurélie Chantôme; Alban Girault; Marie Potier; Christine Collin; Pascal Vaudin; Jean-Christophe Pagès; Christophe Vandier; Virginie Joulin

Cell migration and invasion are required for tumour cells to spread from the primary tumour bed so as to form secondary tumours at distant sites. We report evidence of an unusual expression of KCa2.3 (SK3) protein in melanoma cell lines but not in normal melanocytes. Knockdown of the KCa2.3 channel led to plasma membrane depolarization, decreased 2D and 3D cell motility. Conversely, enforced production of KCa2.3 protein in KCa2.3 non-expressing cells led to the plasma membrane becoming hyperpolarized, and enhanced cell motility. In contrast, KCa3.1 channels had no effect on cell motility despite an active role in regulating membrane potential. Our data also suggest that membrane hyperpolarization increases melanoma cell motility and that this occurs through the KCa2.3 channel. Our findings reveal a previously unknown function of the KCa2.3 channel, and suggest that the KCa2.3 channel might be the only member of the Ca(2+)-activated K(+) channel family involved in melanoma cell motility pathways.


Current Pharmaceutical Design | 2006

Voltage-gated sodium channels: new targets in cancer therapy?

Sébastien Roger; Marie Potier; Christophe Vandier; Pierre Besson; Jean-Yves Le Guennec

Early detection and treatment of cancers have increased survival and improved clinical outcome. The development of metastases is often associated with a poor prognostic of survival. Finding early markers of metastasis and developing new therapies against their development is a great challenge. Since a few years, there is more evidence that ionic channels are involved in the oncogenic process. Among these, voltage-gated sodium channels expressed in non-nervous or non-muscular organs are often associated with the metastatic behaviour of different cancers. The aim of this review is to describe the current knowledge on the functional expression of voltage-gated sodium channels and their biological roles in different cancers such as prostate, breast, lung (small cells and non-small cells) and leukaemia. In the conclusion, we develop conceptual approaches to understand how such channels can be involved in the metastatic process and conclude that blockers targeted toward these channels are promising new therapeutic solutions against metastatic cancers.


Biochimica et Biophysica Acta | 2014

KCa and Ca2 + channels: The complex thought ☆

Maxime Guéguinou; Aurélie Chantôme; Gaëlle Fromont; Philippe Bougnoux; Christophe Vandier; Marie Potier-Cartereau

Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Current Medicinal Chemistry | 2012

Targeting SKCa Channels in Cancer: Potential New Therapeutic Approaches

Alban Girault; Jean-Pierre Haelters; Marie Potier-Cartereau; Aurélie Chantôme; Philippe Bougnoux; Virginie Joulin; Christophe Vandier

Many studies have reported changes in potassium channel expression in many cancers and the involvement of these channels in various stages of cancer progression. By contrast, data concerning SKCa channels (small conductance calcium-activated potassium channels) have only recently become available. This review aims i) to present the structure and physiology of SKCa channels, ii) to provide an overview of published data concerning the SKCa proteins produced in tumor cells, and, whenever possible, the biological function assigned to them and iii) to review previous and novel modulators of SKCa channels. SKCa channels are activated by low concentrations of intracellular calcium and consist of homo- or heteromeric assemblies of α-subunits named SK1, SK2 and SK3. SK2-3 channels are expressed in tumors and have been assigned a biological function in cancer cells: the enhancement of cell proliferation and cell migration by hijacking the functions of SK2 and SK3 channels, respectively. Two major classes of SKCa modulators have been described: toxins (apamin) and small synthetic molecules. Most SKCa blockers are pore blockers, but some modify the calcium sensitivity of SKCa channels without interacting with the apamin binding site. In this review, we present edelfosine and ohmline as atypical anticancer agents and novel SK3 inhibitors. Edelfosine and ohmline are synthetic alkyl-lipids with structures different from all previously described SKCa modulators. They should pave the way for the development of a new class of migration-targeted anticancer agents. We believe that such blockers have potential for use in the prevention or treatment of metastasis.


British Journal of Pharmacology | 2011

The SK3/KCa2.3 potassium channel is a new cellular target for edelfosine

M. Potier; Aurélie Chantôme; Virginie Joulin; A. Girault; Sébastien Roger; Pierre Besson; M.-L. Jourdan; J.-Y. Leguennec; Philippe Bougnoux; Christophe Vandier

BACKGROUND AND PURPOSE The 1‐O‐octadecyl‐2‐O‐methyl‐sn‐glycero‐3‐phosphocholine (edelfosine) is an ether‐linked phospholipid with promising anti‐cancer properties but some side effects that preclude its full clinical therapeutic exploitation. We hypothesized that this lipid could interact with plasma membrane ion channels and modulate their function.


Biochemical Journal | 2004

Cathepsin K: a cysteine protease with unique kinin-degrading properties.

Emmanuel Godat; Fabien Lecaille; Claire Desmazes; Sophie Duchêne; Enrico Weidauer; Paul Saftig; Dieter Brömme; Christophe Vandier; Gilles Lalmanach

Taking into account a previous report of an unidentified enzyme from macrophages acting as a kininase, the ability of cysteine proteases to degrade kinins has been investigated. Wild-type fibroblast lysates from mice, by contrast with cathepsin K-deficient lysates, hydrolysed BK (bradykinin), and released two metabolites, BK-(1-4) and BK-(5-9). Cathepsin K, but not cathepsins B, H, L and S, cleaved kinins at the Gly4-Phe5 bond and the bradykinin-mimicking substrate Abz (o-aminobenzoic acid)-RPPGFSPFR-3-NO2-Tyr (3-nitrotyrosine) more efficiently (pH 6.0: kcat/K(m)=12500 mM(-1) x s(-1); pH 7.4: kcat/K(m)=6930 mM(-1) x s(-1)) than angiotensin-converting enzyme hydrolysed BK. Conversely Abz-RPPGFSPFR-3-NO2-Tyr was not cleaved by the Y67L (Tyr67-->Leu)/L205A (Leu205-->Ala) cathepsin K mutant, indicating that kinin degradation mostly depends on the S2 substrate specificity. Kininase activity was further evaluated on bronchial smooth muscles. BK, but not its metabolites BK(1-4) and BK(5-9), induced a dose-dependent contraction, which was abolished by Hoe140, a B2-type receptor antagonist. Cathepsin K impaired BK-dependent contraction of normal and chronic hypoxic rats, whereas cathepsins B and L did not. Taking together vasoactive properties of kinins and the potency of cathepsin K to modulate BK-dependent contraction of smooth muscles, the present data support the notion that cathepsin K may act as a kininase, a unique property among mammalian cysteine proteases.

Collaboration


Dive into the Christophe Vandier's collaboration.

Top Co-Authors

Avatar

Aurélie Chantôme

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Philippe Bougnoux

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Pierre Besson

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Sébastien Roger

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Dubuis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Haelters

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marie Potier-Cartereau

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Charlotte M. Sevrain

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hélène Couthon-Gourvès

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge