Christophe Velours
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Velours.
Nucleic Acids Research | 2015
Nicolas Richet; Danni Liu; Pierre Legrand; Christophe Velours; Armelle Corpet; Albane Gaubert; May Bakail; Gwenaelle Moal-Raisin; Raphael Guerois; Christel Compper; Arthur Besle; Berengère Guichard; Geneviève Almouzni; Françoise Ochsenbein
MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway.
Molecular Biology of the Cell | 2015
Mini Jose; Sylvain Tollis; Deepak Nair; Romain Mitteau; Christophe Velours; Aurélie Massoni-Laporte; Anne Royou; Jean-Baptiste Sibarita; Derek McCusker
The mechanisms governing the spatial organization of endocytosis and exocytosis are ill defined. A quantitative imaging screen and high-density single-vesicle tracking are used to identify mutants that are defective in endocytic and exocytic vesicle organization. The screen identifies a role for the exocyst complex in connecting the two pathways.
Molecular Biology of the Cell | 2012
Derek McCusker; Anne Royou; Christophe Velours; Douglas R. Kellogg
Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which trigger polarization of the actin cytoskeleton for delivery of membrane to growth sites. It is found that Cdk1s function in polarized growth extends beyond that of actin organization.
Journal of Biological Chemistry | 2014
Agata Nawrotek; Beatriz G. Guimarães; Christophe Velours; Agathe Subtil; Marcel Knossow; Benoît Gigant
Background: Although parasites commonly hijack the actin cytoskeleton, the Chlamydia pneumoniae CopN protein interferes with microtubules. Results: CopN targets the β-tubulin longitudinal interface and inhibits microtubule assembly through a dual mechanism. Conclusion: In addition to regulating type III secretion, C. pneumoniae CopN has evolved microtubule-related specific functions. Significance: A framework for understanding the CopN role in the chlamydial infectious cycle is provided. Although the actin network is commonly hijacked by pathogens, there are few reports of parasites targeting microtubules. The proposed member of the LcrE protein family from some Chlamydia species (e.g. pCopN from C. pneumoniae) binds tubulin and inhibits microtubule assembly in vitro. From the pCopN structure and its similarity with that of MxiC from Shigella, we definitively confirm CopN as the Chlamydia homolog of the LcrE family of bacterial proteins involved in the regulation of type III secretion. We have also investigated the molecular basis for the pCopN effect on microtubules. We show that pCopN delays microtubule nucleation and acts as a pure tubulin-sequestering protein at steady state. It targets the β subunit interface involved in the tubulin longitudinal self-association in a way that inhibits nucleotide exchange. pCopN contains three repetitions of a helical motif flanked by disordered N- and C-terminal extensions. We have identified the pCopN minimal tubulin-binding region within the second and third repeats. Together with the intriguing observation that C. trachomatis CopN does not bind tubulin, our data support the notion that, in addition to the shared function of type III secretion regulation, these proteins have evolved different functions in the host cytosol. Our results provide a mechanistic framework for understanding the C. pneumoniae CopN-specific inhibition of microtubule assembly.
Microbial Cell Factories | 2015
Frédéric Samazan; Bachra Rokbi; Delphine Seguin; Fabienne Telles; Valérie Gautier; Gilbert Richarme; Didier Chevret; Paloma F. Varela; Christophe Velours; Isabelle Poquet
BackgroundLactococcus lactis, a lactic acid bacterium traditionally used to ferment milk and manufacture cheeses, is also, in the biotechnology field, an interesting host to produce proteins of medical interest, as it is “Generally Recognized As Safe”. Furthermore, as L. lactis naturally secretes only one major endogenous protein (Usp45), the secretion of heterologous proteins in this species facilitates their purification from a protein-poor culture medium. Here, we developed and optimized protein production and secretion in L. lactis to obtain proteins of high quality, both correctly folded and pure to a high extent. As proteins to be produced, we chose the two transmembrane members of the HtrA protease family in Staphylococcus aureus, an important extra-cellular pathogen, as these putative surface-exposed antigens could constitute good targets for vaccine development.ResultsA recombinant ORF encoding a C-terminal, soluble, proteolytically inactive and tagged form of each staphylococcal HtrA protein was cloned into a lactococcal expression-secretion vector. After growth and induction of recombinant gene expression, L. lactis was able to produce and secrete each recombinant rHtrA protein as a stable form that accumulated in the culture medium in similar amounts as the naturally secreted endogenous protein, Usp45. L. lactis growth in fermenters, in particular in a rich optimized medium, led to higher yields for each rHtrA protein. Protein purification from the lactococcal culture medium was easily achieved in one step and allowed recovery of highly pure and stable proteins whose identity was confirmed by mass spectrometry. Although rHtrA proteins were monomeric, they displayed the same secondary structure content, thermal stability and chaperone activity as many other HtrA family members, indicating that they were correctly folded. rHtrA protein immunogenicity was established in mice. The raised polyclonal antibodies allowed studying the expression and subcellular localization of wild type proteins in S. aureus: although both proteins were expressed, only HtrA1 was found to be, as predicted, exposed at the staphylococcal cell surface suggesting that it could be a better candidate for vaccine development.ConclusionsIn this study, an efficient process was developed to produce and secrete putative staphylococcal surface antigens in L. lactis and to purify them to homogeneity in one step from the culture supernatant. This allowed recovering fully folded, stable and pure proteins which constitute promising vaccine candidates to be tested for protection against staphylococcal infection. L. lactis thus proved to be an efficient and competitive cell factory to produce proteins of high quality for medical applications.
Journal of Biological Chemistry | 2017
Laurent Loiseau; Cameron Fyfe; Laurent Aussel; Mahmoud Hajj Chehade; Sara B. Hernández; Bruno Faivre; Djemel Hamdane; Caroline Mellot-Draznieks; Bérengère Rascalou; Ludovic Pelosi; Christophe Velours; David Cornu; Murielle Lombard; Josep Casadesús; Fabien Pierrel; Marc Fontecave; Frédéric Barras
Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC, which is required for efficient UQ biosynthesis, and which we have renamed ubiK. Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK–UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli. Last, in Salmonella enterica, ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK–UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both.
PLOS ONE | 2017
T.Q. Nguyen; Mélanie Chenon; Fernando Vilela; Christophe Velours; Magali Aumont-Nicaise; Jessica Andreani; Paloma F. Varela; Paola Llinas; Julie Ménétrey
Kinesin1 plays a major role in neuronal transport by recruiting many different cargos through its kinesin light chain (KLC). Various structurally unrelated cargos interact with the conserved tetratricopeptide repeat (TPR) domain of KLC. The N-terminal capping helix of the TPR domain exhibits an atypical sequence and structural features that may contribute to the versatility of the TPR domain to bind different cargos. We determined crystal structures of the TPR domain of both KLC1 and KLC2 encompassing the N-terminal capping helix and show that this helix exhibits two distinct and defined orientations relative to the rest of the TPR domain. Such a difference in orientation gives rise, at the N-terminal part of the groove, to the formation of one hydrophobic pocket, as well as to electrostatic variations at the groove surface. We present a comprehensive structural analysis of available KLC1/2-TPR domain structures that highlights that ligand binding into the groove can be specific of one or the other N-terminal capping helix orientations. Further, structural analysis reveals that the N-terminal capping helix is always involved in crystal packing contacts, especially in a TPR1:TPR1’ contact which highlights its propensity to be a protein–protein interaction site. Together, these results underline that the structural plasticity of the N-terminal capping helix might represent a structural determinant for TPR domain structural versatility in cargo binding.
PLOS ONE | 2018
Mélanie Chenon; Fernando Vilela; Christophe Velours; Magali Aumont-Nicaise; Jessica Andreani; Paloma F. Varela; Paola Llinas; Julie Ménétrey
[This corrects the article DOI: 10.1371/journal.pone.0186354.].
Physical Chemistry Chemical Physics | 2016
Djemel Hamdane; Christophe Velours; David Cornu; Magali Nicaise; Murielle Lombard; Marc Fontecave
Journal of Biological Chemistry | 2018
T. Quyen Nguyen; Magali Aumont-Nicaise; Jessica Andreani; Christophe Velours; Mélanie Chenon; Fernando Vilela; Clémentine Geneste; Paloma F. Varela; Paola Llinas; Julie Ménétrey