Christophe Werlé
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Werlé.
ChemistryOpen | 2014
Andreas Hansen; Christoph Bannwarth; Stefan Grimme; Predrag Petrović; Christophe Werlé; Jean-Pierre Djukic
Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large dipalladium complex is quenched by bulky phosphane ligands (triphenylphosphane and tricyclohexylphosphane). Reaction enthalpies and Gibbs free energies were measured by isotherm titration calorimetry (ITC) and theoretically ‘back-corrected’ to yield 0 K gas-phase reaction energies (ΔE). It is shown that the Gibbs free solvation energy calculated with continuum models represents the largest source of error in theoretical thermochemistry protocols. The (‘back-corrected’) experimental reaction energies were used to benchmark (dispersion-corrected) density functional and wave function theory methods. Particularly, we investigated whether the atom-pairwise D3 dispersion correction is also accurate for transition metal chemistry, and how accurately recently developed local coupled-cluster methods describe the important long-range electron correlation contributions. Both, modern dispersion-corrected density functions (e.g., PW6B95-D3(BJ) or B3LYP-NL), as well as the now possible DLPNO-CCSD(T) calculations, are within the ‘experimental’ gas phase reference value. The remaining uncertainties of 2–3 kcal mol−1 can be essentially attributed to the solvation models. Hence, the future for accurate theoretical thermochemistry of large transition metal reactions in solution is very promising.
Angewandte Chemie | 2015
Christophe Werlé; Richard Goddard; Alois Fürstner
Abstract The dirhodium carbene derived from bis(4‐methoxyphenyl)diazomethane and [Rh(tpa)4]⋅CH2Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X‐ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4‐methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect.
Journal of the American Chemical Society | 2016
Christophe Werlé; Richard Goddard; Petra Philipps; Christophe Farès; Alois Fürstner
Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology.
Journal of the American Chemical Society | 2013
Christophe Werlé; Corinne Bailly; Lydia Karmazin-Brelot; Xavier-Frédéric Le Goff; Louis Ricard; Jean-Pierre Djukic
A rational method of synthesis of stable neutral T-shaped 14 electron Pd and Pt complexes is proposed. It takes advantage of the ambiphilic character of the tricarbonyl(η(6)-indenyl)chromium anion, of which the main property is to behave as a hemichelating ligand, that is a nonconventional heteroditopic ligand capable of chelating a metal center by way of covalent and noncovalent bonding, thus preserving its unsaturated valence shell. The reaction of the in situ formed tricarbonyl(η(6)-2-methylindenyl)chromium anion with a series of Pd and Pt metallacycles afforded new air-stable and persistent synfacial heterobimetallic complexes in which the metallacycle binds the indenyl fragment via its metal in an η(1) fashion, leaving the fourth coordination site at the chelated metal virtually vacant. The structures of eight of these novel complexes are disclosed, and their bonding features are investigated by an array of theoretical methods based on the density functional theory (NBO, EDA, ETS-NOCV, AIM, NCI region analysis). Theory shows that the formation of these unusual structures of bimetallic synfacial η(1)-indenyl-Pd/Pt complexes is driven thermodynamically by attractive Coulombic occlusion of the fourth vacant coordination site at Pd/Pt centers by the Cr(CO)3 moiety.
Angewandte Chemie | 2014
Christophe Werlé; Corinne Bailly; Lydia Karmazin-Brelot; Xavier-Frédéric Le Goff; Michel Pfeffer; Jean-Pierre Djukic
Hemichelation is emerging as a new mode of coordination where non-covalent interactions crucially contribute to the cohesion of electron-unsaturated organometallic complexes. This study discloses an unprecedented demonstration of this concept to a Group 9 metal, that is, Rh(I). The syntheses of new 14-electron Rh(I) complexes were achieved by choosing the anti-[(η(6):η(6)-fluorenyl){Cr(CO)3}2] anion as the ambiphilic hemichelating ligand, which was treated with [{Rh(nbd)Cl}2] (nbd=norbornadiene) and [{Rh(CO)2Cl}2]. The new T-shaped Rh(I) hemichelates were characterized by analytical and structural methods. Investigations using the methods of the DFT and electron-density topology analysis (NCI region analysis, QTAIM theory) confirmed the closed-shell, non-covalent and attractive characters of the interaction between the Rh(I) center and the proximal Cr(CO)3 moiety. This study shows that, by appropriate tuning of the electronic properties of the ambiphilic ligand, truly coordination-unsaturated Rh(I) complexes can be synthesized in a manageable form.
Angewandte Chemie | 2016
Christophe Werlé; Richard Goddard; Petra Philipps; Christophe Farès; Alois Fürstner
For the first time, the stereochemical course of an asymmetric cyclopropanation can be discussed on the basis of experimental structural information on a pertinent chiral dirhodium carbene intermediate. Key to success was the formation of racemic single crystals of a heterochiral [Rh2 {(S*)-PTTL}4 {=C(Ar)COOMe}][Rh2 {(R*)-PTTL}4 ] (Ar=MeOC6 H4 ; PTTL=N-phthaloyl-tert-leucinate) capsule, which has been characterized by X-ray diffraction. NMR spectroscopic data confirm that the obtained structural portrait is also relevant in solution and provide additional information about the dynamics of this species. The chiral binding pocket is primarily defined by the conformational preferences of the N-phthaloyl-protected amino acid ligands and reinforced by a network of weak interligand interactions that get stronger when chlorinated phthalimide residues are used.
Journal of the American Chemical Society | 2018
Daniel James Tindall; Christophe Werlé; Richard Goddard; Petra Philipps; Christophe Farès; Alois Fürstner
Traditional rhodium carbene chemistry relies on the controlled decomposition of diazo derivatives with [Rh2(OAc)4] or related dinuclear Rh(+2) complexes, whereas the use of other rhodium sources is much less developed. It is now shown that half-sandwich carbene species derived from [Cp*MX2]2 (M = Rh, Ir; X = Cl, Br, I, Cp* = pentamethylcyclopentadienyl) also exhibit favorable application profiles. Interestingly, the anionic ligand X proved to be a critical determinant of reactivity in the case of cyclopropanation, epoxide formation and the previously unknown catalytic metathesis of azobenzene derivatives, whereas the nature of X does not play any significant role in -OH insertion reactions. This perplexing disparity can be explained on the basis of spectral and crystallographic data of a representative set of carbene complexes of this type, which could be isolated despite their pronounced electrophilicity. Specifically, the donor/acceptor carbene 10a derived from ArC(═N2)COOMe and [Cp*RhCl2]2 undergoes spontaneous 1,2-migratory insertion of the emerging carbene unit into the Rh-Cl bond with formation of the C-metalated rhodium enolate 11. In contrast, the analogous complexes 10b,c derived from [Cp*RhX2]2 (X = Br, I) as well as the iridium species 13 and 14 derived from [Cp*IrCl2]2 are sufficiently stable and allow true carbene reactivity to be harnessed. These complexes are competent intermediates for the catalytic metathesis of azobenzene derivatives, which provides access to α-imino esters that would be difficult to make otherwise. Rather than involving metal nitrenes, the reaction proceeds via aza-ylides that evolve into diaziridines; a metastable compound of this type has been fully characterized.
Chemcatchem | 2018
Oriol Martínez-Ferraté; Christophe Werlé; Giancarlo Franciò; Walter Leitner
A catalytic system based on complexes comprising abundant and cheap manganese together with readily available aminotriazole ligands is reported. The new Mn(I) complexes are catalytically competent in transfer hydrogenation of ketones with 2‐propanol as hydrogen source. The reaction proceeds under mild conditions at 80 °C for 20 h with 3 % of catalyst loading using either KOtBu or NaOH as base. Good to excellent yields were obtained for a wide substrate scope with broad functional group tolerance. The obtained results by varying the substitution pattern of the ligand are consistent with an out‐sphere mechanism for the H‐transfer.
Journal of the American Chemical Society | 2013
Christophe Werlé; Mustapha Hamdaoui; Corinne Bailly; Xavier-Frédéric Le Goff; Lydia Brelot; Jean-Pierre Djukic
Journal of Molecular Catalysis A-chemical | 2016
Yann Corre; Christophe Werlé; Lydia Brelot-Karmazin; Jean-Pierre Djukic; Francine Agbossou-Niedercorn; Christophe Michon