Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Desjardins is active.

Publication


Featured researches published by Christopher A. Desjardins.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


Mbio | 2012

Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus

Kelli L. Palmer; Paul A. Godfrey; Allison D. Griggs; Veronica N. Kos; Jeremy Zucker; Christopher A. Desjardins; Gustavo Maia Cerqueira; Dirk Gevers; Suzanne Walker; Jennifer R. Wortman; Michael Feldgarden; Brian R. Haas; Bruce W. Birren; Michael S. Gilmore

ABSTRACT The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level. IMPORTANCE The enterococci, in particular, vancomycin-resistant enterococci, have emerged as leading causes of multidrug-resistant hospital-acquired infections. In this study, we examined genome sequence data to define traits with the potential to influence host-microbe interactions and to identify sequences and biochemical functions that could form the basis for the rapid identification of enterococcal species or lineages of importance in clinical and environmental samples. The enterococci, in particular, vancomycin-resistant enterococci, have emerged as leading causes of multidrug-resistant hospital-acquired infections. In this study, we examined genome sequence data to define traits with the potential to influence host-microbe interactions and to identify sequences and biochemical functions that could form the basis for the rapid identification of enterococcal species or lineages of importance in clinical and environmental samples.


Clinical Infectious Diseases | 2017

Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses

Shawn R. Lockhart; Kizee A. Etienne; Snigdha Vallabhaneni; Joveria Farooqi; Anuradha Chowdhary; Nelesh P. Govender; Arnaldo Lopes Colombo; Belinda Calvo; Christina A. Cuomo; Christopher A. Desjardins; Elizabeth L. Berkow; Mariana Castanheira; Rindidzani E. Magobo; Kauser Jabeen; Rana Jawad Asghar; Jacques F. Meis; Brendan R. Jackson; Tom Chiller; Anastasia P. Litvintseva

Background. Candida auris, a multidrug-resistant yeast that causes invasive infections, was first described in 2009 in Japan and has since been reported from several countries. Methods. To understand the global emergence and epidemiology of C. auris, we obtained isolates from 54 patients with C. auris infection from Pakistan, India, South Africa, and Venezuela during 2012–2015 and the type specimen from Japan. Patient information was available for 41 of the isolates. We conducted antifungal susceptibility testing and whole-genome sequencing (WGS). Results. Available clinical information revealed that 41% of patients had diabetes mellitus, 51% had undergone recent surgery, 73% had a central venous catheter, and 41% were receiving systemic antifungal therapy when C. auris was isolated. The median time from admission to infection was 19 days (interquartile range, 9–36 days), 61% of patients had bloodstream infection, and 59% died. Using stringent break points, 93% of isolates were resistant to fluconazole, 35% to amphotericin B, and 7% to echinocandins; 41% were resistant to 2 antifungal classes and 4% were resistant to 3 classes. WGS demonstrated that isolates were grouped into unique clades by geographic region. Clades were separated by thousands of single-nucleotide polymorphisms, but within each clade isolates were clonal. Different mutations in ERG11 were associated with azole resistance in each geographic clade. Conclusions. C. auris is an emerging healthcare-associated pathogen associated with high mortality. Treatment options are limited, due to antifungal resistance. WGS analysis suggests nearly simultaneous, and recent, independent emergence of different clonal populations on 3 continents. Risk factors and transmission mechanisms need to be elucidated to guide control measures.


Genome Research | 2012

Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

Christina A. Cuomo; Christopher A. Desjardins; Malina A. Bakowski; Jonathan M. Goldberg; Amy T. Ma; James J. Becnel; Elizabeth S. Didier; Lin Fan; David I. Heiman; Joshua Z. Levin; Qiandong Zeng; Emily R. Troemel

Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.


Nature Genetics | 2013

Genomics of Loa loa, a Wolbachia-free filarial parasite of humans.

Christopher A. Desjardins; Gustavo C. Cerqueira; Jonathan M. Goldberg; Julie C. Dunning Hotopp; Brian J. Haas; Jeremy Zucker; José M. C. Ribeiro; Sakina Saif; Joshua Z. Levin; Lin Fan; Qiandong Zeng; Carsten Russ; Jennifer R. Wortman; Doran L. Fink; Bruce Birren; Thomas B. Nutman

Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and nonparasitic nematodes.


PLOS Genetics | 2011

Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

Christopher A. Desjardins; Mia D. Champion; Jason W. Holder; Anna Muszewska; Jonathan M. Goldberg; Alexandre M. Bailão; Marcelo M. Brigido; Márcia Eliana da Silva Ferreira; Ana Maria Garcia; Marcin Grynberg; Sharvari Gujja; David I. Heiman; Matthew R. Henn; Chinnappa D. Kodira; Henry León-Narváez; Larissa V. G. Longo; Li-Jun Ma; Iran Malavazi; Alisson L. Matsuo; Flavia V. Morais; Maristela Pereira; Sabrina Rodríguez-Brito; Sharadha Sakthikumar; Silvia Maria Salem-Izacc; Sean Sykes; Marcus de Melo Teixeira; Milene C. Vallejo; Maria Emilia Telles Walter; Chandri Yandava; Qiandong Zeng

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Mbio | 2012

Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States

Veronica N. Kos; Christopher A. Desjardins; Allison D. Griggs; Gustavo Maia Cerqueira; Andries J. van Tonder; Matthew T. G. Holden; Paul A. Godfrey; Kelli L. Palmer; Kip Bodi; Emmanuel F. Mongodin; Jennifer R. Wortman; Michael Feldgarden; Trevor D. Lawley; Steven R. Gill; Brian J. Haas; Bruce W. Birren; Michael S. Gilmore

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection. Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.


PLOS Medicine | 2015

Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal

Keira A. Cohen; Thomas Abeel; Abigail Manson McGuire; Christopher A. Desjardins; Vanisha Munsamy; Terrance Shea; Bruce J. Walker; Nonkqubela Bantubani; Deepak Almeida; Lucia Alvarado; Sinéad B. Chapman; Nomonde R. Mvelase; Eamon Y. Duffy; Michael Fitzgerald; Pamla Govender; Sharvari Gujja; Susanna. Hamilton; Clinton Howarth; Jeffrey D. Larimer; Kashmeel Maharaj; Matthew Pearson; Margaret Priest; Qiandong Zeng; Nesri Padayatchi; Jacques Grosset; Sarah K. Young; Jennifer R. Wortman; Koleka Mlisana; Max O'Donnell; Bruce W. Birren

Background The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. Methods and Findings We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974–1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988–1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe. Conclusions In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.


Molecular Ecology | 2010

The mushroom habitat as an ecological arena for global exchange of Wolbachia.

Julie K. Stahlhut; Christopher A. Desjardins; Michael E. Clark; Laura Baldo; Jacob A. Russell; John H. Werren; John Jaenike

Wolbachia infect a variety of arthropod and nematode hosts, but in arthropods, host phylogenetic relationships are usually poor predictors of strain similarity. This suggests that new infections are often established by horizontal transmission. To gain insight into the factors affecting the probability of horizontal transmission among host species, we ask how host phylogeny, geographical distribution and ecology affect patterns of Wolbachia strain similarity. We used multilocus sequence typing (MLST) to characterize Wolbachia strain similarity among dipteran hosts associated with fleshy mushrooms. Wolbachia Supergroup A was more common than Supergroup B in Diptera, and also more common in mycophagous than non‐mycophagous Diptera. Within Supergroup A, host family within Diptera had no effect on strain similarity, and there was no tendency for Wolbachia strains from sympatric host species to be more similar to one another than to strains from hosts in different biogeographical realms. Supergroup A strains differed between mycophagous and non‐mycophagous Diptera more than expected by chance, suggesting that ecological associations can facilitate horizontal transmission of Wolbachia within mycophagous fly communities. For Supergroup B, there were no significant associations between strain similarity and host phylogeny, biogeography, or ecology. We identified only two cases in which closely related hosts carried closely related Wolbachia strains, evidence that Wolbachia‐host co‐speciation or early introgression can occur but may not be a major contributor to overall strain diversity. Our results suggest that horizontal transmission of Wolbachia can be influenced by host ecology, thus leading to partial restriction of Wolbachia strains or strain groups to particular guilds of insects.


PLOS Genetics | 2011

Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.

Jason W. Holder; Jil C. Ulrich; Anthony C. DeBono; Paul A. Godfrey; Christopher A. Desjardins; Jeremy Zucker; Qiandong Zeng; Alex L. B. Leach; Ion Ghiviriga; Christine Dancel; Thomas Abeel; Dirk Gevers; Chinnappa D. Kodira; Brian Desany; Jason Affourtit; Bruce W. Birren; Anthony J. Sinskey

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.

Collaboration


Dive into the Christopher A. Desjardins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Abeel

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge