Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Larson is active.

Publication


Featured researches published by Christopher A. Larson.


Molecular Pharmacology | 2010

Copper Transporters and the Cellular Pharmacology of the Platinum-Containing Cancer Drugs

Stephen B. Howell; Roohangiz Safaei; Christopher A. Larson; Michael J. Sailor

Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.


Molecular Pharmacology | 2009

The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs.

Christopher A. Larson; Brian G. Blair; Roohangiz Safaei; Stephen B. Howell

The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggesting that its contribution to influx was likely to be on the initial phase of drug entry. Loss of CTR1 decreased the initial binding of DDP to cells and reduced influx measured over the first 5 min of drug exposure by 81%. Loss of CTR1 almost completely eliminated the initial influx of CBDCA and reduced the initial uptake of L-OHP by 68% but had no effect on the influx of transplatin. Loss of CTR1 rendered cells resistant to even high concentrations of DDP when measured in vitro, and re-expression of CTR1 in the CTR1(-/-) cells restored both DDP uptake and cytotoxicity. The growth of CTR1(-/-) tumor xenografts in which CTR1 levels were restored by infection with a lentivirus expressing wild-type CTR1 was reduced by a single maximum tolerated dose of DDP in vivo, whereas the CTR1(-/-) xenografts failed to respond at all. We conclude that CTR1 mediates the initial influx of DDP, CBDCA, and L-OHP and is a major determinant of responsiveness to DDP both in vitro and in vivo.


Clinical Cancer Research | 2009

Copper Transporter 2 Regulates the Cellular Accumulation and Cytotoxicity of Cisplatin and Carboplatin

Brian G. Blair; Christopher A. Larson; Roohangiz Safaei; Stephen B. Howell

Purpose: Copper transporter 2 (CTR2) is known to mediate the uptake of Cu+1 by mammalian cells. Several other Cu transporters, including the influx transporter CTR1 and the two efflux transporters ATP7A and ATP7B, also regulate sensitivity to the platinum-containing drugs. We sought to determine the effect of CTR2 on influx, intracellular trafficking, and efflux of cisplatin and carboplatin. Experimental Design: The role of CTR2 was examined by knocking down CTR2 expression in an isogenic pair of mouse embryo fibroblasts consisting of a CTR1+/+ line and a CTR1−/− line in which both CTR1 alleles had been deleted. CTR2 levels were determined by quantitative reverse transcription-PCR and Western blot analysis. Cisplatin (DDP) was quantified by inductively coupled plasma mass spectrometry and 64Cu and [14C]carboplatin (CBDCA) accumulation by γ and scintillation counting. Results: Deletion of CTR1 reduced the uptake of Cu, DDP, and CBDCA and increased resistance to their cytotoxic effects by 2- to 3-fold. Knockdown of CTR2 increased uptake of Cu only in the CTR1+/+ cells. In contrast, knockdown of CTR2 increased whole-cell DDP uptake and DNA platination in both CTR1+/+ and CTR1−/− cells and proportionately enhanced cytotoxicity while producing no effect on vesicular accumulation or efflux. A significant correlation was found between CTR2 mRNA and protein levels and sensitivity to DDP in a panel of six ovarian carcinoma cell lines. Conclusions: CTR2 is a major determinant of sensitivity to the cytotoxic effects of DDP and CBDCA. CTR2 functions by limiting drug accumulation, and its expression correlates with the sensitivity of human ovarian carcinoma cell lines to DDP.


Journal of Inorganic Biochemistry | 2009

Effects of the loss of Atox1 on the cellular pharmacology of cisplatin

Roohangiz Safaei; Mohammad H. Maktabi; Brian G. Blair; Christopher A. Larson; Stephen B. Howell

Previous work has demonstrated that the copper (Cu) transporters Ctr1, Atp7a and Atp7b regulate the cellular pharmacology of cisplatin (CDDP) by mediating its uptake and efflux. It was also shown that, in the process of uptake by Ctr1, CDDP triggers the rapid proteasomal degradation of its own transporter. The current study examined the role of the metallochaperone Atox1 in the regulation of uptake, efflux and subcellular distribution of CDDP by using a pair of fibroblast cell lines established from Atox1(+/+) and Atox1(-/-) mice. Atox1 is a metallochaperone that is known to play a central role in distributing Cu within the cells and was recently shown to act as a Cu-dependent transcription factor. Loss of Atox1 increased Cu accumulation and reduced efflux. In contrast, loss of Atox1 reduced the influx of CDDP and subsequent accumulation in vesicular compartments and in DNA. Loss of Atox1 was found to block the CDDP-induced down regulation of Ctr1. Ctr1 was found to be polyubiquitinated in an Atox1-dependent manner during CDDP exposure. In conclusion, Atox1 is required for the polyubiquitination of Ctr1 and the Ctr1-mediated uptake of CDDP.


Clinical Cancer Research | 2009

Enhanced Delivery of Cisplatin to Intraperitoneal Ovarian Carcinomas Mediated by the Effects of Bortezomib on the Human Copper Transporter 1

Danielle D. Jandial; Salman Farshchi-Heydari; Christopher A. Larson; Gregory I. Elliott; Wolfgang J. Wrasidlo; Stephen B. Howell

Purpose: The copper transporter 1 (CTR1) is a major influx transporter for platinum drugs. However, the accumulation of cisplatin in human ovarian carcinoma cells is limited by the fact that cisplatin triggers the down-regulation and proteasomal degradation of CTR1, thereby limiting its own uptake. We sought to determine whether proteasome inhibition using bortezomib would prevent human CTR1 (hCTR1) degradation and increase platinum accumulation in ovarian cancer cells. Experimental Design: The effects of bortezomib on human hCTR1 expression and cisplatin accumulation were measured by Western blot, flow cytometric, and confocal digital imaging analyses. Platinum accumulation was measured by inductively coupled plasma mass spectrometry and bortezomib concentrations by liquid chromatography/mass spectrometry. Results: Bortezomib blocked the cisplatin-induced down-regulation of hCTR1 in a concentration-dependent manner and increased cisplatin uptake 1.6- to 2.4-fold. Median effect analysis showed a combination index of 0.37 at 50% cell kill, indicating a high level of synergy. The effect of bortezomib was muted in cells lacking both alleles of CTR1, showing that bortezomib was working primarily through its effect on blocking hCTR1 degradation. I.p. administration of bortezomib produced a peritoneal/plasma area under the curve ratio of 252 in a murine model. I.p. administration of bortezomib before i.p. cisplatin increased platinum accumulation in peritoneal tumors by 33% (P = 0.006). Conclusions: Proteasomal inhibition prevented cisplatin-induced down-regulation of hCTR1 in ovarian cancer cells and enhanced drug uptake and cell killing in a synergistic manner. Bortezomib shows a large pharmacologic advantage when administered i.p. There is a strong rationale for the combined i.p. administration of bortezomib and cisplatin.


Molecular Pharmacology | 2011

Copper Transporter 2 Regulates Endocytosis and Controls Tumor Growth and Sensitivity to Cisplatin In Vivo

Brian G. Blair; Christopher A. Larson; Preston L. Adams; Paolo B. Abada; Catherine E. Pesce; Roohangiz Safaei; Stephen B. Howell

Copper transporter 2 (CTR2) is one of the four copper transporters in mammalian cells that influence the cellular pharmacology of cisplatin and carboplatin. CTR2 was knocked down using a short hairpin RNA interference. Robust expression of CTR2 was observed in parental tumors grown in vivo, whereas no staining was found in the tumors formed from cells in which CTR2 had been knocked down. Knockdown of CTR2 reduced growth rate by 5.8-fold, increased the frequency of apoptotic cells, and decreased the vascular density, but it did not change copper content. Knockdown of CTR2 increased the tumor accumulation of cis-diamminedichloroplatinum(II) [cisplatin (cDDP)] by 9.1-fold and greatly increased its therapeutic efficacy. Because altered endocytosis has been implicated in cDDP resistance, uptake of dextran was used to quantify the rate of macropinocytosis. Knockdown of CTR2 increased dextran uptake 2.5-fold without reducing exocytosis. Inhibition of macropinocytosis with either amiloride or wortmannin blocked the increase in macropinocytosis mediated by CTR2 knockdown. Stimulation of macropinocytosis by platelet-derived growth factor coordinately increased dextran and cDDP uptake. Knockdown of CTR2 was associated with activation of the Rac1 and cdc42 GTPases that control macropinocytosis but not activation of the phosphoinositide-3 kinase pathway. We conclude that CTR2 is required for optimal tumor growth and that it is an unusually strong regulator of cisplatin accumulation and cytotoxicity. CTR2 regulates the transport of cDDP in part through control of the rate of macropinocytosis via activation of Rac1 and cdc42. Selective knockdown of CTR2 in tumors offers a strategy for enhancing the efficacy of cDDP.


Molecular Pharmacology | 2010

The role of the methionines and histidines in the transmembrane domain of mammalian copper transporter 1 in the cellular accumulation of cisplatin.

Christopher A. Larson; Preston L. Adams; Brian G. Blair; Roohangiz Safaei; Stephen B. Howell

Mammalian copper transporter 1 (CTR1) is a high-affinity copper influx transporter that also mediates the uptake of platinum-containing chemotherapeutic agents including cisplatin (cDDP). Methionines 150, 154, and histidine 139 have been proposed to form a series of stacked rings in the pore formed by the CTR1 homotrimer, each of which is required for maximal copper transport. To examine the mechanism by which hCTR1 also transports cDDP, variant forms of hCTR1 in which methionines 150 and 154 were converted to isoleucines or in which histidine 139 was converted to alanine were re-expressed in cells in which both alleles of CTR1 had been knocked out. Each of these conversions disabled copper transport and increased cellular resistance to the cytotoxic effect of copper. In contrast, conversion of the methionines increased the uptake and cytotoxicity of cDDP well above that attained with wild-type hCTR1. Conversion of His139 to alanine did not impair cDDP uptake and actually enhanced cytotoxicity. Thus, although Met150 and Met154 facilitate the movement of copper through the pore, they serve to obstruct the passage of cDDP. None of the modifications altered the ability of cDDP to trigger the degradation of hCTR1, indicating that cDDP must interact with hCTR1 at other sites as well. Although both copper and cDDP may rely on a series of transchelation reactions to pass through the hCTR1 trimeric complex, the details of the molecular interactions must be different, which provides a potential basis for selective pharmacological modulation of copper versus cDDP cytotoxicity.


Molecular Pharmacology | 2010

Regulation of Copper Transporter 2 Expression by Copper and Cisplatin in Human Ovarian Carcinoma Cells

Brian G. Blair; Christopher A. Larson; Preston L. Adams; Paolo B. Abada; Roohangiz Safaei; Stephen B. Howell

Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(−/−) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(−/−) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1.


Biochemical Pharmacology | 2010

The Role of the N-terminus of Mammalian Copper Transporter 1 in the Cellular Accumulation of Cisplatin

Christopher A. Larson; Preston L. Adams; Danielle D. Jandial; Brian G. Blair; Roohangiz Safaei; Stephen B. Howell

The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper (Cu) from the extracellular space, and has been shown to play a major role in the initial accumulation of platinum-based drugs. In this study we re-expressed wild type and structural variants of hCTR1 in mouse embryo fibroblasts in which both alleles of mCTR1 had been knocked out (CTR1(-/-)) to examine the role of the N-terminal extracellular domain of hCTR1 in the accumulation of cisplatin (cDDP). Deletion of either the first 45 amino acids or just the (40)MXXM(45) motif in the N-terminal domain did not alter subcellular distribution or the amount of protein in the plasma membrane but it eliminated the ability of hCTR1 to mediate the uptake of Cu. In contrast it only partially reduced cDDP transport capacity. Neither of these structural changes prevented cDDP from triggering the rapid degradation of hCTR1. However, they did alter the potency of the cDDP that achieved cell entry, possibly reflecting the fact that hCTR1 may mediate the transport of cDDP both through the pore it forms in the plasma membrane and via endocytosis. We conclude that cDDP interacts with hCTR1 both at (40)MXXM(45) and at sites outside the N-terminal domain that produce the conformational changes that trigger degradation.


Cell Biochemistry and Biophysics | 2012

An All-Atom Model of the Structure of Human Copper Transporter 1

Igor Tsigelny; Yuriy Sharikov; Jerry P. Greenberg; Mark A. Miller; Valentina L. Kouznetsova; Christopher A. Larson; Stephen B. Howell

Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom model of this important transporter using the low resolution structure as a starting point. The all-atom model provides new insights into the roles of specific residues of the N-terminal extracellular domain, the intracellular loop, and C-terminal region in metal ion transport. In particular, the model demonstrates that the central region of the pore contains four sets of methionine triads in the intramembranous region. The structure confirms that two triads of methionine residues delineate the intramembranous region of the transporter, and further identifies two additional methionine triads that are located in the extracellular N-terminal part of the transporter. Together, the four triads create a structure that promotes stepwise transport of metal ions into and then through the intramembranous channel of the transporter via transient thioether bonds to methionine residues. Putative copper-binding sites in the hCTR1 trimer were identified by a program developed by us for prediction of metal-binding sites. These sites correspond well with the known effects of mutations on the ability of the protein to transport copper and cisplatin.

Collaboration


Dive into the Christopher A. Larson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian G. Blair

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Reid

University of California

View shared research outputs
Top Co-Authors

Avatar

Bryan Oronsky

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Arnold Oronsky

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Corey A. Carter

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo B. Abada

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge