Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Lowry is active.

Publication


Featured researches published by Christopher A. Lowry.


Journal of Neuroendocrinology | 2002

Functional Subsets of Serotonergic Neurones: Implications for Control of the Hypothalamic‐Pituitary‐Adrenal Axis

Christopher A. Lowry

Serotonergic systems play an important role in the regulation of behavioural, autonomic and endocrine responses to stressful stimuli. This includes modulation of both the hypothalamic‐pituitary‐adrenal (HPA) axis and the hypothalamic‐spinal‐adrenal (HSA) axis, which converge at the level of the adrenal cortex to regulate glucocorticoid secretion. Paradoxically, serotonin can either facilitate or inhibit HPA axis activity and stress‐related physiological or behavioural responses. A detailed analysis of the brainstem raphe´ complex and its ascending projections reveals that facilitatory and inhibitory effects of serotonergic systems on glucocorticoid secretion may be due to influences of topographically organized and functionally diverse serotonergic systems. (i) A serotonergic system arising from the middle and caudal dorsal raphe´ nucleus and projecting to a distributed central autonomic control system and a lateral ‘emotional motor system’. Evidence suggests that serotonin can sensitize this subcortical circuit associated with autonomic arousal, anxiety and conditioned fear. (ii) A serotonergic system arising from the median raphe´ nucleus and projecting extensively and selectively to a ventral subiculum projection system. Evidence suggests that serotonin facilitates this limbic circuit associated with inhibition of ultradian, circadian and stress‐induced activity of both the HPA axis and the HSA axis. These new perspectives, based on functional anatomical considerations, provide a hypothetical framework for investigating the role of serotonergic systems in the modulation of ultradian, circadian and stress‐induced neuroendocrine function.


Expert Reviews in Molecular Medicine | 2006

Tryptophan metabolism in the central nervous system: medical implications

Jon Ruddick; Andrew K. Evans; David J. Nutt; Stafford L. Lightman; G. A. W. Rook; Christopher A. Lowry

The metabolism of the amino acid L-tryptophan is a highly regulated physiological process leading to the generation of several neuroactive compounds within the central nervous system. These include the aminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT), products of the kynurenine pathway of tryptophan metabolism (including 3-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic acid and kynurenic acid), the neurohormone melatonin, several neuroactive kynuramine metabolites of melatonin, and the trace amine tryptamine. The integral role of central serotonergic systems in the modulation of physiology and behaviour has been well documented since the first description of serotonergic neurons in the brain some 40 years ago. However, while the significance of the peripheral kynurenine pathway of tryptophan metabolism has also been recognised for several decades, it has only recently been appreciated that the synthesis of kynurenines within the central nervous system has important consequences for physiology and behaviour. Altered kynurenine metabolism has been implicated in the pathophysiology of conditions such as acquired immunodeficiency syndrome (AIDS)-related dementia, Huntingtons disease and Alzheimers disease. In this review we discuss the molecular mechanisms involved in regulating the metabolism of tryptophan and consider the medical implications associated with dysregulation of both serotonergic and kynurenine pathways of tryptophan metabolism.


Stress | 2005

Modulation of anxiety circuits by serotonergic systems.

Christopher A. Lowry; Philip L. Johnson; Anders Hay-Schmidt; Jens D. Mikkelsen; Anantha Shekhar

Anxiety is a complex emotional state associated with sustained heightened autonomic and behavioral arousal and an increase in avoidance behavior. Anxiety-related behavior is a form of risk assessment behavior that is associated with a level of uncertainty or unpredictability regarding the outcome of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal parts of the dorsal raphe nucleus.


Annals of the New York Academy of Sciences | 2004

Anatomic and functional topography of the dorsal raphe nucleus.

Jolane K. Abrams; Philip L. F. Johnson; Jacob H. Hollis; Christopher A. Lowry

Abstract: Serotonergic systems play an important and generalized role in regulation of sleep‐wake states and behavioral arousal. Recent in vivo electrophysiologic recording studies in animals suggest that several different subtypes of serotonergic neurons with unique behavioral correlates exist within the brainstem raphe nuclei, raising the possibility that topographically organized subpopulations of serotonergic neurons may have unique behavioral or physiologic correlates and unique functional properties. We have shown that the stress‐related and anxiogenic neuropeptide corticotropin‐releasing factor can stimulate the in vitro neuronal firing rates of topographically organized subpopulations of serotonergic neurons within the dorsal raphe nucleus (DR). These findings are consistent with a wealth of behavioral studies suggesting that serotonergic systems within the DR are involved in the modulation of ongoing anxiety‐related behavior and in behavioral sensitization, a process whereby anxiety‐ and fear‐related behavioral responses are sensitized for a period of up to 24 to 48 h. The dorsomedial subdivision of the DR, particularly its middle and caudal aspects, has attracted considerable attention as a region that may play a critical role in the regulation of acute and chronic anxiety states. Future studies aimed at characterization of the molecular and cellular properties of topographically organized subpopulations of serotonergic neurons are likely to lead to major advances in our understanding of the role of serotonergic systems in stress‐related physiology and behavior.


Annals of the New York Academy of Sciences | 2008

Serotonergic Systems, Anxiety, and Affective Disorder

Christopher A. Lowry; Matthew W. Hale; Andrew K. Evans; Jasper L.T. Heerkens; Daniel R. Staub; Paul J. Gasser; Anantha Shekhar

Depressed suicide patients have elevated expression of neuronal tryptophan hydroxylase 2 (TPH2) mRNA and protein in midbrain serotonergic neurons, as well as increases in brain serotonin turnover. The mechanisms underlying these changes are uncertain, but increased TPH2 expression and serotonin turnover could result from genetic influences, adverse early life experiences, or acute stressful life events, all of which can alter serotonergic neurotransmission and have been implicated in determining vulnerability to major depression. Emerging evidence suggests that there are several different stress‐related subsets of serotonergic neurons, each with a unique role in the integrated stress response. Here we review our current understanding of how genetic and environmental factors may influence TPH2 mRNA expression and serotonergic neurotransmission, focusing in particular on the dorsomedial part of the dorsal raphe nucleus. This subdivision of the dorsal raphe nucleus is selectively innervated by key forebrain structures implicated in regulation of anxiety states, it gives rise to projections to a distributed neural system mediating anxiety states, and serotonergic neurons within this subdivision are selectively activated by a number of stress‐ and anxiety‐related stimuli. A better understanding of the anatomical and functional properties of specific stress‐ or anxiety‐related serotonergic systems should aid our understanding of the neural mechanisms underlying the etiology of anxiety and affective disorders.


Neuroscience | 2005

Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs

Jolane K. Abrams; Philip L. F. Johnson; Anders Hay-Schmidt; Jens D. Mikkelsen; Anantha Shekhar; Christopher A. Lowry

Serotonergic systems play important roles in modulating behavioral arousal, including behavioral arousal and vigilance associated with anxiety states. To further our understanding of the neural systems associated with increases in anxiety states, we investigated the effects of multiple anxiogenic drugs on topographically organized subpopulations of serotonergic neurons using double immunohistochemical staining for c-Fos and tryptophan hydroxylase combined with topographical analysis of the rat dorsal raphe nucleus (DR). Anxiogenic drugs with diverse pharmacological properties including the adenosine receptor antagonist caffeine, the serotonin 5-HT2A/2C receptor agonist m-chlorophenyl piperazine (mCPP), the alpha2-adrenoreceptor antagonist yohimbine, and the benzodiazepine receptor partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG-7142) induced increases in behavioral arousal and vigilance behaviors consistent with an increase in anxiety state. In addition, these anxiogenic drugs, excluding yohimbine, had convergent actions on an anatomically-defined subset of serotonergic neurons within the middle and caudal, dorsal subdivision of the DR. High resolution topographical analysis revealed that at the mid-rostrocaudal level, caffeine and FG-7142 had convergent effects on c-Fos expression in serotonergic neurons that were restricted to a previously undefined region, which we have named the shell region of the dorsal part of the dorsal raphe nucleus (DRDSh), that overlaps the anatomical border between the dorsal part of the dorsal raphe nucleus, the ventral part of the dorsal raphe nucleus (DRV), and the ventrolateral part of the dorsal raphe nucleus (DRVL). Retrograde tracing methods revealed that DRDSh contains large numbers of neurons projecting to the basolateral amygdaloid nucleus, a forebrain structure important for emotional appraisal and modulation of anxiety-related physiological and behavioral responses. Together these findings support the hypothesis that there is a functional topographical organization in the DR and are consistent with the hypothesis that anxiogenic drugs have selective actions on a subpopulation of serotonergic neurons projecting to a distributed central autonomic and emotional motor control system regulating anxiety states and anxiety-related physiological and behavioral responses.


Psychopharmacology | 2011

Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits

Matthew W. Hale; Christopher A. Lowry

RationaleDysfunction of serotonergic systems is thought to play an important role in a number of neurological and psychiatric disorders. Recent studies suggest that there is anatomical and functional diversity among serotonergic systems innervating forebrain systems involved in the control of physiologic and behavioral responses, including the control of emotional states.ObjectiveHere, we highlight the methods that have been used to investigate the heterogeneity of serotonergic systems and review the evidence for the unique anatomical, hodological, and functional properties of topographically organized subpopulations of serotonergic neurons in the midbrain and pontine raphe complex.ConclusionThe emerging understanding of the topographically organized synaptic regulation of brainstem serotonergic systems, the topography of the efferent projections of these systems, and their functional properties, should enable identification of novel therapeutic approaches to treatment of neurological and psychiatric conditions that are associated with dysregulation of serotonergic systems.


Neuroscience | 2005

Early life experience alters behavior during social defeat: focus on serotonergic systems.

Katherine L. Gardner; Kv Thrivikraman; Stafford L. Lightman; Paul M. Plotsky; Christopher A. Lowry

Early life experience can have prolonged effects on neuroendocrine, autonomic, and behavioral responses to stress. The objective of this study was to investigate the effects of early life experience on behavior during social defeat, as well as on associated functional cellular responses in serotonergic and non-serotonergic neurons within the dorsal raphe nucleus, a structure which plays an important role in modulation of stress-related physiology and behavior. Male Long Evans rat pups were exposed to either normal animal facility rearing or 15 min or 180 min of maternal separation from postnatal days 2-14. As adults, these rats were exposed to a social defeat protocol. Differences in behavior were seen among the early life treatment groups during social defeat; rats exposed to 180 min of maternal separation from postnatal days 2-14 displayed more passive-submissive behaviors and less proactive coping behaviors. Analysis of the distribution of tryptophan hydroxylase and c-Fos-like immunoreactivity in control rats exposed to a novel cage and rats exposed to social defeat revealed that, independent of the early life experience, rats exposed to social defeat showed an increase in the number of c-Fos-like immunoreactive nuclei in serotonergic neurons in the middle and caudal parts of the dorsal dorsal raphe nucleus and caudal part of the ventral dorsal raphe nucleus, regions known to contain serotonergic neurons projecting to central autonomic and emotional motor control systems. This is the first study to show that the dorsomedial part of the mid-rostrocaudal dorsal raphe nucleus is engaged by a naturalistic stressor and supports the hypothesis that early life experience alters behavioral coping strategies during social conflict; furthermore, this study is consistent with the hypothesis that topographically organized subpopulations of serotonergic neurons principally within the mid-rostrocaudal and caudal part of the dorsal dorsal raphe nucleus modulate stress-related physiological and behavioral responses.


Brain Research Bulletin | 2007

Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors; relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus

J. Adriaan Bouwknecht; Francesca Spiga; Daniel R. Staub; Matthew W. Hale; Anantha Shekhar; Christopher A. Lowry

Serotonergic systems arising from the mid-rostrocaudal and caudal dorsal raphe nucleus (DR) have been implicated in the facilitation of anxiety-related behavioral responses by anxiogenic drugs or aversive stimuli. In this study we attempted to determine a threshold to engage serotonergic neurons in the DR following exposure to aversive conditions in an anxiety-related behavioral test. We manipulated the intensity of anxiogenic stimuli in studies of male Wistar rats by leaving them undisturbed (CO), briefly handling them (HA), or exposing them to an open-field arena for 15-min under low-light (LL: 8-13 lux) or high-light (HL: 400-500 lux) conditions. Rats exposed to HL conditions responded with reduced locomotor activity, reduced time spent exploring the center of the arena, a lower frequency of rearing and grooming, and an increased frequency of facing the corner of the arena compared to LL rats. Rats exposed to HL conditions had small but significant increases in c-Fos expression within serotonergic neurons in subdivisions of the rostral DR. Exposure to HL conditions did not alter c-Fos responses in serotonergic neurons in any other DR subdivision. In contrast, rats exposed to the open-field arena had increased c-Fos expression in non-serotonergic cells throughout the DR compared to CO rats, and this effect was particularly apparent in the dorsolateral part of the DR. We conclude that exposure to HL conditions, compared to LL conditions, increased anxiety-related behavioral responses in an open-field arena but this stimulus was at or below the threshold required to increase c-Fos expression in serotonergic neurons.


Cellular and Molecular Neurobiology | 2012

Stress-related Serotonergic Systems: Implications for Symptomatology of Anxiety and Affective Disorders

Matthew W. Hale; Anantha Shekhar; Christopher A. Lowry

Previous studies have suggested that serotonergic neurons in the midbrain raphe complex have a functional topographic organization. Recent studies suggest that stimulation of a bed nucleus of the stria terminalis-dorsal raphe nucleus pathway by stress- and anxiety-related stimuli modulates a subpopulation of serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD) and caudal part of the dorsal raphe nucleus (DRC) that participates in facilitation of anxiety-like responses. In contrast, recent studies suggest that activation of a spinoparabrachial pathway by peripheral thermal or immune stimuli excites subpopulations of serotonergic neurons in the ventrolateral part of the dorsal raphe nucleus/ventrolateral periaqueducal gray (DRVL/VLPAG) region and interfascicular part of the dorsal raphe nucleus (DRI). Studies support a role for serotonergic neurons in the DRVL/VLPAG in inhibition of panic-like responses, and serotonergic neurons in the DRI in antidepressant-like effects. Thus, data suggest that while some subpopulations of serotonergic neurons in the dorsal raphe nucleus play a role in facilitation of anxiety-like responses, others play a role in inhibition of anxiety- or panic-like responses, while others play a role in antidepressant-like effects. Understanding the anatomical and functional properties of these distinct serotonergic systems may lead to novel therapeutic strategies for the prevention and/or treatment of affective and anxiety disorders. In this review, we describe the anatomical and functional properties of subpopulations of serotonergic neurons in the dorsal raphe nucleus, with a focus on those implicated in symptoms of anxiety and affective disorders, the DRD/DRC, DRVL/VLPAG, and DRI.

Collaboration


Dive into the Christopher A. Lowry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. A. W. Rook

University College London

View shared research outputs
Top Co-Authors

Avatar

Charles L. Raison

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Hoisington

United States Air Force Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge