Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Mancuso is active.

Publication


Featured researches published by Christopher A. Mancuso.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

Ming-Chang Chen; Christopher A. Mancuso; Carlos Hernandez-Garcia; Franklin Dollar; Ben Galloway; Dimitar Popmintchev; Pei-Chi Huang; Barry C. Walker; Luis Plaja; Agnieszka Jaron-Becker; Andreas Becker; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

Significance Attosecond pulses driven by femtosecond lasers make it possible to capture the fastest electron dynamics in molecules and materials. To date, attosecond pulses driven by widely available 800-nm lasers were limited to the extreme UV region of the spectrum, which restricted the range of materials, liquid, and molecular systems that could be explored because of the limited penetrating power. Our recent work showed that longer-wavelength midinfrared driving lasers at wavelengths from 1 to 4 µm are optimal for generating shorter-wavelength, bright, soft X-ray beams. Here we show that longer-pulse-duration midinfrared lasers are also optimal for generating shorter-pulse-duration, attosecond, soft X-rays. This is an unexpected and beautiful convergence of physics: bright, soft X-ray high harmonics naturally emerge as isolated attosecond bursts. High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.


Science | 2015

Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

Dimitar Popmintchev; Carlos Hernandez-Garcia; Franklin Dollar; Christopher A. Mancuso; J. A. Pérez-Hernández; Ming-Chang Chen; Amelia Hankla; Xiaohui Gao; Bonggu Shim; Alexander L. Gaeta; Maryam Tarazkar; Dmitri A. Romanov; Robert J. Levis; Jim Gaffney; M. E. Foord; Stephen B. Libby; Agnieszka Jaron-Becker; Andreas Becker; Luis Plaja; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

Short wavelengths birth shorter ones The shortest laser pulses—with durations measured in attoseconds—arise from a process termed high-harmonic generation (HHG). Essentially, a longer, “driving” pulse draws electrons out of gaseous atoms like a slingshot, and, when they ricochet back, light emerges at shorter wavelengths. Most HHG has been carried out using light near the visible/infrared boundary for the driving pulse. Popmintchev et al. used an ultraviolet driving pulse instead, which yielded an unexpectedly efficient outcome. These results could presage a more generally efficient means of creating x-ray pulses for fundamental dynamics studies as well as technological applications. Science, this issue p. 1225 Ultraviolet pulses show unexpected efficiency in generating the higher-frequency emission underlying attosecond spectroscopy. High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.


Optics Express | 2016

Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

Bosheng Zhang; Dennis F. Gardner; Matthew H. Seaberg; Elisabeth R. Shanblatt; Christina L. Porter; Robert Karl; Christopher A. Mancuso; Henry C. Kapteyn; Margaret M. Murnane; Daniel E. Adams

We report a proof-of-principle demonstration of a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. This scheme is enabled by combining ptychographic information multiplexing (PIM) with a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and a more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both microscopy and spectroscopy aspects. In addition to spectromicroscopy, this method images the multicolor EUV beam in situ, making this a powerful beam characterization technique. In contrast to other methods, the techniques described here use no hardware to separate wavelengths, leading to efficient use of the EUV radiation.


Journal of Physics B | 2011

Dependence of carbon fragments from methane in strong and ultrastrong elliptically polarized laser fields

Nagitha Ekanayake; Bruce Wen; Lauren Howard; Sarah Wells; Michael Videtto; Christopher A. Mancuso; Teddy Stanev; Z Condon; Sara LeMar; Arielle Camilo; R Toth; Matthew F. DeCamp; Barry C. Walker

We present the ellipticity dependence of the ultrafast photoionization for Cn+ fragments from methane. The study extends from the strong field (C+, C2+) at 1014 W cm−2 to the ultrastrong field (C5+) at 1018 W cm−2. The measurements show that C+ and C2+ ionization have limited sensitivity to the field polarization. As the laser intensity and corresponding degree of ionization increase (C4+, C5+), the dependence on the field polarization increases. Comparison to a semi-classical field ionization model shows that the ellipticity dependence of the relative ion yield for higher charge states comes from the field dependence of tunnelling ionization rather than nonsequential ionization due to rescattering. A movement from a molecule-like response to an atom-like response with the increase in intensity is observed.


Physical Review A | 2010

Photoionization by an ultraintense laser field: Response of atomic xenon

Anthony DiChiara; I. Ghebregziabher; J. M. Waesche; Teddy Stanev; Nagitha Ekanayake; L. R. Barclay; Sarah Wells; A. Watts; Michael Videtto; Christopher A. Mancuso; Barry C. Walker

We present energy- and angle-resolved photoionization from Xe in an ultrastrong laser field at 10{sup 19} W/cm{sup 2}. The observed yields are consistent with the tunneling ionization of Xe{sup 9+} to Xe{sup 24+}. However, energy and angle-resolved photoelectron spectra show differences for electrons whose final energies are above or below 0.5 MeV, which is approximately the ponderomotive energy at these intensities. Above 0.5 MeV, the observed photoelectron cutoff energy (between 1 and 1.35 MeV), photoelectron energy spectra, and the angle-resolved photoelectron azimuthal distributions agree with a model using tunneling ionization, multiple charge states, a classical relativistic continuum, and nonparaxial three-dimensional (3D) focused laser field. Below 0.5 MeV the yields and angular distributions observed indicate dynamics not included within a classical, single electron model of the interaction.


Optica | 2018

High harmonics with spatially varying ellipticity

Jennifer L. Ellis; Kevin M. Dorney; Daniel D. Hickstein; Nathan Brooks; Christian Gentry; Carlos Hernandez-Garcia; Dmitriy Zusin; Justin M. Shaw; Quynh L. Nguyen; Christopher A. Mancuso; G. S. Matthijs Jansen; S. Witte; Henry C. Kapteyn; Margaret M. Murnane

We present a method of producing ultrashort pulses of circularly polarized extreme ultraviolet (EUV) light through high-harmonic generation (HHG). HHG is a powerful tool for generating bright laser-like beams of EUV and soft x-ray light with ultrashort pulse durations, which are important for many spectroscopic and imaging applications in the materials, chemical, and nano sciences. Historically HHG was restricted to linear polarization; however, recent advances are making it possible to precisely control the polarization state of the emitted light simply by adjusting the driving laser beams and geometry. In this work, we gain polarization control by combining two spatially separated and orthogonally linearly polarized HHG sources to produce a far-field beam with a uniform intensity distribution, but with a spatially varying ellipticity that ranges from linearly to fully circularly polarized. This spatially varying ellipticity was characterized using EUV magnetic circular dichroism, which demonstrates that a high degree of circularity is achieved, reaching almost 100% near the magnetic M-edge of cobalt. The spatial modulation of the polarization facilitates measurements of circular dichroism, enabling us to measure spectrally resolved magnetic circular dichroism without the use of an EUV spectrometer, thereby avoiding the associated losses in both flux and spatial resolution, which could enable hyperspectral imaging of chiral systems. Through numerical simulations, we also show the generality of this scheme, which can be applied with either the discrete harmonic orders generated by many-cycle pulses or the high-harmonic supercontinua generated by few-cycle driving laser pulses. Therefore, this technique provides a promising route for the production of bright isolated attosecond pulses with circular polarization that can probe ultrafast spin dynamics in materials.


Optics Express | 2017

Phase matching of noncollinear sum and difference frequency high harmonic generation above and below the critical ionization level

Jennifer L. Ellis; Kevin M. Dorney; C. G. Durfee; Carlos Hernandez-Garcia; Franklin Dollar; Christopher A. Mancuso; Tingting Fan; Dmitriy Zusin; Christian Gentry; Patrik Grychtol; Henry C. Kapteyn; Margaret M. Murnane; Daniel D. Hickstein

We experimentally investigate phase matching of high harmonic generation in a noncollinear geometry and demonstrate phase matching above critical ionization using noncollinear high-order-difference-frequency generation, which provides a route to maximize the generated photon energies.


conference on lasers and electro optics | 2016

Generation of bright soft X-ray harmonics with circular polarization for X-ray magnetic circular dichroism

Tingting Fan; Patrick Grychtol; Ronny Knut; Carlos Hernandez-Garcia; Daniel D. Hickstein; Dimitry Zusin; Christian Gentry; Franklin Dollar; Christopher A. Mancuso; Craig W. Hogle; Ofer Kfir; Dominik Legut; Karel Carva; Jennifer L. Ellis; Kevin M. Dorney; Cong Chen; Oleg Shpyrko; Eric E. Fullerton; Oren Cohen; Peter M. Oppeneer; D. B. Milošević; Andreas Becker; Agnieszka Jaron-Becker; Tenio Popmintchev; Henry C. Kapteyn; Margaret M. Murnane

We present the first circularly polarized harmonics in the soft X-ray region and the physics underlying it. This source enables the first X-ray magnetic circular dichroism measurements in rare earth elements on tabletop.


Proceedings of SPIE | 2016

Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source

Dennis F. Gardner; Bosheng Zhang; Matthew H. Seaberg; Elisabeth R. Shanblatt; Christina L. Porter; Robert Karl; Christopher A. Mancuso; Henry C. Kapteyn; Margaret M. Murnane; Daniel E. Adams

We demonstrate hyperspectral coherent imaging in the EUV spectral region for the first time, without the need for hardware-based wavelength separation. This new scheme of spectromicroscopy is the most efficient use of EUV photons for imaging because there is no energy loss from mirrors or monochromatizing optics. An EUV spectral comb from a tabletop high-harmonic source, centered at a wavelength of 30nm, illuminates the sample and the scattered light is collected on a pixel-array detector. Using a lensless imaging technique known as ptychographical information multiplexing, we simultaneously retrieve images of the spectral response of the sample at each individual harmonic. We show that the retrieved spectral amplitude and phase agrees with theoretical predictions. This work demonstrates the power of coherent EUV beams for rapid material identification with nanometer-scale resolution.


Laser Science | 2016

Ionization Dynamics in Intense Two-Color Circularly Polarized Laser Fields

Jan L. Chaloupka; Daniel D. Hickstein; Christopher A. Mancuso; Kevin M. Dorney; Henry C. Kapteyn; Margaret M. Murnane

Ionization in intense two-color circularly polarized laser pulses is explored numerically and experimentally. Double ionization is enhanced with counterrotating fields, and diverse dynamics are uncovered that are impossible with linear polarization.

Collaboration


Dive into the Christopher A. Mancuso's collaboration.

Top Co-Authors

Avatar

Henry C. Kapteyn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Margaret M. Murnane

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Franklin Dollar

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Daniel D. Hickstein

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Ellis

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Gentry

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Dorney

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Tenio Popmintchev

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge