Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Powell is active.

Publication


Featured researches published by Christopher A. Powell.


Molecular Cell | 2013

PrimPol, an Archaic Primase/Polymerase Operating in Human Cells

Sara García-Gómez; Aurelio Reyes; María I. Martínez-Jiménez; E. Sandra Chocrón; Silvana Mourón; Gloria Terrados; Christopher A. Powell; Eduardo Salido; Juan Méndez; Ian J. Holt; Luis Blanco

Summary We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.


American Journal of Human Genetics | 2014

Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic Cardiomyopathy, Lactic Acidosis, and Encephalopathy

Robert Kopajtich; Thomas J. Nicholls; Joanna Rorbach; Metodi D. Metodiev; Peter Freisinger; Hanna Mandel; Arnaud Vanlander; Daniele Ghezzi; Rosalba Carrozzo; Robert W. Taylor; Klaus Marquard; Kei Murayama; Thomas Wieland; Thomas Schwarzmayr; Johannes A. Mayr; Sarah F. Pearce; Christopher A. Powell; Ann Saada; Akira Ohtake; Federica Invernizzi; Eleonora Lamantea; Ewen W. Sommerville; Angela Pyle; Patrick F. Chinnery; Ellen Crushell; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Zahra Assouline

Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.


Nature Communications | 2016

Deficient methylation and formylation of mt-tRNA Met wobble cytosine in a patient carrying mutations in NSUN3

Lindsey Van Haute; Sabine Dietmann; Laura S. Kremer; Shobbir Hussain; Sarah F. Pearce; Christopher A. Powell; Joanna Rorbach; Rebecca Lantaff; Sandra Blanco; Sascha Sauer; Urania Kotzaeridou; Georg F. Hoffmann; Yasin Memari; Anja Kolb-Kokocinski; Richard Durbin; Johannes A. Mayr; Michaela Frye; Holger Prokisch; Michal Minczuk

Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m5C) methyltransferase NSun3 and link m5C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m5C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNAMet). Further, we demonstrate that m5C deficiency in mt-tRNAMet results in the lack of 5-formylcytosine (f5C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f5C in human mitochondrial RNA is generated by oxidative processing of m5C.


Frontiers in Genetics | 2015

Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

Christopher A. Powell; Thomas J. Nicholls; Michal Minczuk

The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.


Human Mutation | 2014

VARS2 and TARS2 Mutations in Patients with Mitochondrial Encephalomyopathies

Daria Diodato; Laura Melchionda; Tobias B. Haack; Cristina Dallabona; Enrico Baruffini; Claudia Donnini; Tiziana Granata; Francesca Ragona; Paolo Balestri; Maria Margollicci; Eleonora Lamantea; Alessia Nasca; Christopher A. Powell; Michal Minczuk; Tim M. Strom; Thomas Meitinger; Holger Prokisch; Costanza Lamperti; Massimo Zeviani; Daniele Ghezzi

By way of whole‐exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl‐tRNA and threonyl‐tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild‐type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl‐tRNA synthetases, as causes of clinically distinct, early‐onset mitochondrial encephalopathies.


American Journal of Human Genetics | 2015

TRMT5 Mutations Cause a Defect in Post-transcriptional Modification of Mitochondrial tRNA Associated with Multiple Respiratory-Chain Deficiencies

Christopher A. Powell; Robert Kopajtich; Aaron R. D'Souza; Joanna Rorbach; Laura S. Kremer; Ralf A. Husain; Cristina Dallabona; Claudia Donnini; Charlotte L. Alston; Helen Griffin; Angela Pyle; Patrick F. Chinnery; Tim M. Strom; Thomas Meitinger; Richard J. Rodenburg; Gudrun Schottmann; Markus Schuelke; Nadine Romain; Ronald G. Haller; Ileana Ferrero; Tobias B. Haack; Robert W. Taylor; Holger Prokisch; Michal Minczuk

Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.


Journal of Inherited Metabolic Disease | 2015

Mitochondrial transcript maturation and its disorders

Lindsey Van Haute; Sarah F. Pearce; Christopher A. Powell; Aaron R. D’Souza; Thomas J. Nicholls; Michal Minczuk

Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.


Human Mutation | 2015

Two Siblings with Homozygous Pathogenic Splice‐Site Variant in Mitochondrial Asparaginyl–tRNA Synthetase (NARS2)

Arnaud Vanlander; Björn Menten; Joél Smet; Linda De Meirleir; Tom Sante; Boel De Paepe; Sara Seneca; Sarah F. Pearce; Christopher A. Powell; Sarah Vergult; Alex Michotte; Elien De Latter; Lies Vantomme; Michal Minczuk; Rudy Van Coster

A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl–tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In‐gel activity staining after blue native‐polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole‐exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3′ splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV‐transformed lymphoblasts, a specific decrease in the amount of charged mt‐tRNAAsn was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease‐associated aaRS2.


Journal of Medical Genetics | 2015

Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder

Curtis R. Coughlin; Gunter Scharer; Marisa W. Friederich; Hung-Chun Yu; Elizabeth A. Geiger; Geralyn Creadon-Swindell; Abigail Collins; Arnaud Vanlander; Rudy Van Coster; Christopher A. Powell; Michael A. Swanson; Michal Minczuk; Johan L.K. Van Hove; Tamim H. Shaikh

Background Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. Methods and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Conclusions Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.


Trends in Biochemical Sciences | 2017

Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances

Sarah F. Pearce; Pedro Rebelo-Guiomar; Aaron R. D’Souza; Christopher A. Powell; Lindsey Van Haute; Michal Minczuk

Perturbation of mitochondrial DNA (mtDNA) gene expression can lead to human pathologies. Therefore, a greater appreciation of the basic mechanisms of mitochondrial gene expression is desirable to understand the pathophysiology of associated disorders. Although the purpose of the mitochondrial gene expression machinery is to provide only 13 proteins of the oxidative phosphorylation (OxPhos) system, recent studies have revealed its remarkable and unexpected complexity. We review here the latest breakthroughs in our understanding of the post-transcriptional processes of mitochondrial gene expression, focusing on advances in analyzing the mitochondrial epitranscriptome, the role of mitochondrial RNA granules (MRGs), the benefits of recently obtained structures of the mitochondrial ribosome, and the coordination of mitochondrial and cytosolic translation to orchestrate the biogenesis of OxPhos complexes.

Collaboration


Dive into the Christopher A. Powell's collaboration.

Top Co-Authors

Avatar

Michal Minczuk

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Sarah F. Pearce

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Lindsey Van Haute

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Joanna Rorbach

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Pedro Rebelo-Guiomar

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Aaron R. D’Souza

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Nicholls

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Ghezzi

Carlo Besta Neurological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge