Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Shera is active.

Publication


Featured researches published by Christopher A. Shera.


Journal of the Acoustical Society of America | 1995

The origin of periodicity in the spectrum of evoked otoacoustic emissions

George Zweig; Christopher A. Shera

Current models of evoked otoacoustic emissions explain the striking periodicity in their frequency spectra by suggesting that it originates through the reflection of forward-traveling waves by a corresponding spatial corrugation in the mechanics of the cochlea. Although measurements of primate cochlear anatomy find no such corrugation, they do indicate a considerable irregularity in the arrangement of outer hair cells. It is suggested that evoked emissions originate through a novel reflection mechanism, representing an analogue of Bragg scattering in nonuniform, disordered media. Forward-traveling waves reflect off random irregularities in the micromechanics of the organ of Corti. The tall, broad peak of the traveling wave defines a localized region of coherent reflection that sweeps along the organ of Corti as the frequency is varied monotonically. Coherent scattering occurs off irregularities within the peak with spatial period equal to half the wavelength of the traveling wave. The phase of the net reflected wave rotates uniformly with frequency at a rate determined by the wavelength of the traveling wave in the region of its peak. Interference between the backward-traveling wave and the stimulus tone creates the observed spectral periodicity. Ear-canal measurements are related to cochlear mechanics by assuming that the transfer characteristics of the middle ear vary slowly with frequency compared to oscillations in the emission spectrum. The relationship between cochlear mechanics at low sound levels and the frequency dependence of evoked emissions is made precise for one-dimensional models of cochlear mechanics. Measurements of basilar-membrane motion in the squirrel monkey are used to predict the spectral characteristics of their emissions. And conversely, noninvasive measurements of evoked otoacoustic emissions are used to predict the width and wavelength of the peak of the traveling wave in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements

Christopher A. Shera; John J. Guinan; Andrew J. Oxenham

We develop an objective, noninvasive method for determining the frequency selectivity of cochlear tuning at low and moderate sound levels. Applicable in humans at frequencies of 1 kHz and above, the method is based on the measurement of stimulus-frequency otoacoustic emissions and, unlike previous noninvasive physiological methods, does not depend on the frequency selectivity of masking or suppression. The otoacoustic measurements indicate that at low sound levels human cochlear tuning is more than twice as sharp as implied by standard behavioral studies and has a different dependence on frequency. New behavioral measurements designed to minimize the influence of nonlinear effects such as suppression agree with the emission-based values. A comparison of cochlear tuning in cat, guinea pig, and human indicates that, contrary to common belief, tuning in the human cochlea is considerably sharper than that found in the other mammals. The sharper tuning may facilitate human speech communication.


Journal of the Acoustical Society of America | 2003

Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning

Christopher A. Shera; John J. Guinan

This paper tests and applies a key prediction of the theory of coherent reflection filtering for the generation of reflection-source otoacoustic emissions. The theory predicts that reflection-source-emission group delay is determined by the group delay of the basilar-membrane (BM) transfer function at its peak. This prediction is tested over a seven-octave frequency range in cats and guinea pigs using measurements of stimulus-frequency-emission (SFOAE) group delay. A comparison with group delays calculated from published measurements of BM mechanical transfer functions supports the theory at the basal end of the cochlea. A comparison across the whole frequency range based on variations in the sharpness of neural tuning with characteristic frequency (CF) suggests that the predicted relation holds in the basal-most 60% of the cochlea. At the apical end of the cochlea, however, the measurements disagree with neural and mechanical group delays. This disagreement suggests that there are important differences in cochlear mechanics and/or mechanisms of emission generation between the base and apex of the cochlea. Measurements in humans over a four-octave range indicate that human SFOAE group delays are roughly a factor of 3 longer than their counterparts in cat and guinea pig but manifest similar trends across CF. The measurements thus reveal global deviations from scaling whose form appears quantitatively similar in all three species. Interpreted using the theory of coherent reflection filtering, the group delay measurements indicate that the wavelength at the peak of the traveling wave decreases with increasing CF at a rate of roughly 25% per octave in the base of the cochlea. The measurements and analysis reported here illustrate the rich potential inherent in OAE measurements for obtaining valuable information about basic cochlear properties such as tuning.


Jaro-journal of The Association for Research in Otolaryngology | 2003

Estimates of Human Cochlear Tuning at Low Levels Using Forward and Simultaneous Masking

Andrew J. Oxenham; Christopher A. Shera

Auditory filter shapes were derived from psychophysical measurements in eight normal-hearing listeners using a variant of the notched-noise method for brief signals in forward and simultaneous masking. Signal frequencies of 1, 2, 4, 6, and 8 kHz were tested. The signal level was fixed at 10 dB above absolute threshold in the forward-masking conditions and fixed at either 10 or 35 dB above absolute threshold in the simultaneous-masking conditions. The results show that filter equivalent rectangular bandwidths (ERBs) are substantially narrower in forward masking than has been found in previous studies using simultaneous masking. Furthermore, in contrast to earlier studies, the sharpness of tuning doubles over the range of frequencies tested, giving QERB values of about 10 and 20 at signal frequencies of 1 and 8 kHz, respectively. It is argued that the new estimates of auditory filter bandwidth provide a more accurate estimate of human cochlear tuning at low levels than earlier estimates using simultaneous masking at higher levels, and that they are therefore more suitable for comparison to cochlear tuning data from other species. The data may also prove helpful in defining the parameters for nonlinear models of human cochlear processing.


Jaro-journal of The Association for Research in Otolaryngology | 2010

Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla

Christopher A. Shera; John J. Guinan; Andrew J. Oxenham

We analyze published auditory-nerve and otoacoustic measurements in chinchilla to test a network of hypothesized relationships between cochlear tuning, cochlear traveling-wave delay, and stimulus-frequency otoacoustic emissions (SFOAEs). We find that the physiological data generally corroborate the network of relationships, including predictions from filter theory and the coherent-reflection model of OAE generation, at locations throughout the cochlea. The results support the use of otoacoustic emissions as noninvasive probes of cochlear tuning. Developing this application, we find that tuning ratios—defined as the ratio of tuning sharpness to SFOAE phase-gradient delay in periods—have a nearly species-invariant form in cat, guinea pig, and chinchilla. Analysis of the tuning ratios identifies a species-dependent parameter that locates a transition between “apical-like” and “basal-like” behavior involving multiple aspects of cochlear physiology. Approximate invariance of the tuning ratio allows determination of cochlear tuning from SFOAE delays. We quantify the procedure and show that otoacoustic estimates of chinchilla cochlear tuning match direct measures obtained from the auditory nerve. By assuming that invariance of the tuning ratio extends to humans, we derive new otoacoustic estimates of human cochlear tuning that remain mutually consistent with independent behavioral measurements obtained using different rationales, methodologies, and analysis procedures. The results confirm that at any given characteristic frequency (CF) human cochlear tuning appears sharper than that in the other animals studied, but varies similarly with CF. We show, however, that the exceptionality of human tuning can be exaggerated by the ways in which species are conventionally compared, which take no account of evident differences between the base and apex of the cochlea. Finally, our estimates of human tuning suggest that the spatial spread of excitation of a pure tone along the human basilar membrane is comparable to that in other common laboratory animals.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans

Philip X. Joris; Christopher Bergevin; Radha Kalluri; Myles Mc Laughlin; Pascal Michelet; Marcel G. A. van der Heijden; Christopher A. Shera

Frequency selectivity in the inner ear is fundamental to hearing and is traditionally thought to be similar across mammals. Although direct measurements are not possible in humans, estimates of frequency tuning based on noninvasive recordings of sound evoked from the cochlea (otoacoustic emissions) have suggested substantially sharper tuning in humans but remain controversial. We report measurements of frequency tuning in macaque monkeys, Old-World primates phylogenetically closer to humans than the laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, chinchillas). We find that measurements of tuning obtained directly from individual auditory-nerve fibers and indirectly using otoacoustic emissions both indicate that at characteristic frequencies above about 500 Hz, peripheral frequency selectivity in macaques is significantly sharper than in these common laboratory animals, matching that inferred for humans above 4–5 kHz. Compared with the macaque, the human otoacoustic estimates thus appear neither prohibitively sharp nor exceptional. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharp tuning in humans. The results have important implications for understanding the mechanical and neural coding of sound in the human cochlea, and thus for developing strategies to compensate for the degradation of tuning in the hearing-impaired.


Journal of the Acoustical Society of America | 2007

Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea.

Christopher A. Shera

Except at the handful of sites explored by the inverse method, the characteristics-indeed, the very existence-of traveling-wave amplification in the mammalian cochlea remain largely unknown. Uncertainties are especially pronounced in the apex, where mechanical and electrical measurements lack the independent controls necessary for assessing damage to the preparation. At a functional level, the form and amplification of cochlear traveling waves are described by quantities known as propagation and gain functions. A method for deriving propagation and gain functions from basilar-membrane mechanical transfer functions is presented and validated by response reconstruction. Empirical propagation and gain functions from locations throughout the cochlea are obtained in mechanically undamaged preparations by applying the method to published estimates of near-threshold basilar membrane responses derived from Wiener-kernel (chinchilla) and zwuis analysis (cat) of auditory-nerve responses to broadband stimuli. The properties of these functions, and their variation along the length of the cochlea, are described. In both species, and at all locations examined, the gain functions reveal a region of positive power gain basal to the wave peak. The results establish the existence of traveling-wave amplification throughout the cochlea, including the apex. The derived propagation and gain functions resemble those characteristic of an active optical medium but rotated by 90 degrees in the complex plane. Rotation of the propagation and gain functions enables the mammalian cochlea to operate as a wideband, hydromechanical laser analyzer.


Journal of the Acoustical Society of America | 2000

Interrelations among distortion-product phase-gradient delays: Their connection to scaling symmetry and its breaking

Christopher A. Shera; Carrick L. Talmadge; Arnold Tubis

Distortion-product-otoacoustic-emission (DPOAE) phase-versus-frequency functions and corresponding phase-gradient delays have received considerable attention because of their potential for providing information about mechanisms of emission generation, cochlear wave latencies, and characteristics of cochlear tuning. The three measurement paradigms in common use (fixed-f1, fixed-f2, and fixed-f2/f1) yield significantly different delays, suggesting that they depend on qualitatively different aspects of cochlear mechanics. In this paper, theory and experiment are combined to demonstrate that simple phenomenological arguments, which make no detailed mechanistic assumptions concerning the underlying cochlear mechanics, predict relationships among the delays that are in good quantitative agreement with experimental data obtained in guinea pigs. To understand deviations between the simple theory and experiment, a general equation is found that relates the three delays for any deterministic model of DPOAE generation. Both model-independent and exact, the general relation provides a powerful consistency check on the measurements and a useful tool for organizing and understanding the structure in DPOAE phase data (e.g., for interpreting the relative magnitudes and intensity-dependencies of the three delays). Analysis of the general relation demonstrates that the success of the simple, phenomenological approach can be understood as a consequence of the mechanisms of emission generation and the approximate local scaling symmetry of cochlear mechanics. The general relation is used to quantify deviations from scaling manifest in the measured phase-gradient delays; the results indicate that deviations from scaling are typically small and that both linear and nonlinear mechanisms contribute significantly to these deviations. Intensity-dependent mechanisms contributing to deviations from scaling include cochlear-reflection and wave-interference effects associated with the mixing of distortion- and reflection-source emissions (as in DPOAE fine structure). Finally, the ratio of the fixed-f1 and fixed-f2 phase-gradient delays is shown to follow from the choice of experimental paradigm and, in the scaling limit, contains no information about cochlear physiology whatsoever. These results cast considerable doubt on the theoretical basis of recent attempts to use relative DPOAE phase-gradient delays to estimate the bandwidths of peripheral auditory filters.


Journal of the Acoustical Society of America | 2007

Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing

Radha Kalluri; Christopher A. Shera

Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relative to the linear growth of the stimulus. The emission is defined as the complex difference between ear-canal pressure measured at one intensity and the rescaled pressure measured at a higher intensity for which the emission is presumed negligible. The suppression method defines the SFOAE as the complex difference between the ear-canal pressure measured with and without a suppressor tone at a nearby frequency. The suppressor tone is presumed to substantially reduce or eliminate the emission. The spectral smoothing method involves convolving the complex ear-canal pressure spectrum with a smoothing function. The analysis exploits the differing latencies of stimulus and emission and is equivalent to windowing in the corresponding latency domain. Although the three methods are generally assumed to yield identical emissions, no equivalence has ever been established. This paper compares human SFOAEs measured with the three methods using procedures that control for temporal drifts, contamination of the calibration by evoked emissions, and other potential confounds. At low stimulus intensities, SFOAEs measured using all three methods are nearly identical. At higher intensities, limitations of the procedures contribute to small differences, although the general spectral shape and phase of the three SFOAEs remain similar. The near equivalence of SFOAEs measured by compression, suppression, and spectral smoothing indicates that SFOAE characteristics are not mere artifacts of measurement methodology.


Journal of the Acoustical Society of America | 2012

Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission.

Sarah Verhulst; Torsten Dau; Christopher A. Shera

This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear mechanics and the generator mechanisms of otoacoustic emissions. Furthermore, the model provides a suitable preprocessor for human auditory perception models where realistic cochlear excitation patterns are desired.

Collaboration


Dive into the Christopher A. Shera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Zweig

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radha Kalluri

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arturo Moleti

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge