Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher B. Ford is active.

Publication


Featured researches published by Christopher B. Ford.


Nature Genetics | 2011

Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection

Christopher B. Ford; Philana Ling Lin; Michael R. Chase; Rupal R. Shah; Oleg Iartchouk; James E. Galagan; Nilofar Mohaideen; Thomas R. Ioerger; James C. Sacchettini; Marc Lipsitch; JoAnne L. Flynn; Sarah M. Fortune

Tuberculosis poses a global health emergency, which has been compounded by the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains. We used whole-genome sequencing to compare the accumulation of mutations in Mtb isolated from cynomolgus macaques with active, latent or reactivated disease. We sequenced 33 Mtb isolates from nine macaques with an average genome coverage of 93% and an average read depth of 117×. Based on the distribution of SNPs observed, we calculated the mutation rates for these disease states. We found a similar mutation rate during latency as during active disease or in a logarithmically growing culture over the same period of time. The pattern of polymorphisms suggests that the mutational burden in vivo is because of oxidative DNA damage. We show that Mtb continues to acquire mutations during disease latency, which may explain why isoniazid monotherapy for latent tuberculosis is a risk factor for the emergence of isoniazid resistance.


Nature Medicine | 2014

Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing

Philana Ling Lin; Christopher B. Ford; M. Teresa Coleman; Amy Myers; Richa Gawande; Thomas R. Ioerger; James C. Sacchettini; Sarah M. Fortune; JoAnne L. Flynn

Over 30% of the worlds population is infected with Mycobacterium tuberculosis (Mtb), yet only ∼5–10% will develop clinical disease. Despite considerable effort, researchers understand little about what distinguishes individuals whose infection progresses to active tuberculosis (TB) from those whose infection remains latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb. Active disease occurs in ∼45% of infected macaques and is defined by clinical, microbiologic and immunologic signs, whereas the remaining infected animals are clinically asymptomatic. Here, we use individually marked Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lung lesions are probably founded by a single bacterium and reach similar maximum burdens. Despite this observation, the fate of individual lesions varies substantially within the same host. Notably, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting that critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be useful in developing effective interventions to prevent active TB.


Nature Genetics | 2013

Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis

Christopher B. Ford; Rupal R. Shah; Midori Kato Maeda; Sebastien Gagneux; Megan Murray; Ted Cohen; James C. Johnston; Jennifer L. Gardy; Marc Lipsitch; Sarah M. Fortune

A key question in tuberculosis control is why some strains of M. tuberculosis are preferentially associated with resistance to multiple drugs. We demonstrate that M. tuberculosis strains from lineage 2 (East Asian lineage and Beijing sublineage) acquire drug resistances in vitro more rapidly than M. tuberculosis strains from lineage 4 (Euro-American lineage) and that this higher rate can be attributed to a higher mutation rate. Moreover, the in vitro mutation rate correlates well with the bacterial mutation rate in humans as determined by whole-genome sequencing of clinical isolates. Finally, using a stochastic mathematical model, we demonstrate that the observed differences in mutation rate predict a substantially higher probability that patients infected with a drug-susceptible lineage 2 strain will harbor multidrug-resistant bacteria at the time of diagnosis. These data suggest that interventions to prevent the emergence of drug-resistant tuberculosis should target bacterial as well as treatment-related risk factors.


Nature Communications | 2013

Magnetic barcode assay for genetic detection of pathogens

Monty Liong; Anh Hoang; Jaehoon Chung; Nil Gural; Christopher B. Ford; Changwook Min; Rupal R. Shah; Rushdy Ahmad; Marta Fernandez-Suarez; Sarah M. Fortune; Mehmet Toner; Hakho Lee; Ralph Weissleder

The task of rapidly identifying patients infected with Mycobacterium tuberculosis in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids based on a magnetic barcoding strategy. PCR-amplified mycobacterial genes are sequence-specifically captured on microspheres, labelled by magnetic nanoprobes and detected by nuclear magnetic resonance. All components are integrated into a single, small fluidic cartridge for streamlined on-chip operation. We use this platform to detect M. tuberculosis and identify drug-resistance strains from mechanically processed sputum samples within 2.5 h. The specificity of the assay is confirmed by detecting a panel of clinically relevant non-M. tuberculosis bacteria, and the clinical utility is demonstrated by the measurements in M. tuberculosis-positive patient specimens. Combined with portable systems, the magnetic barcode assay holds promise to become a sensitive, high-throughput and low-cost platform for point-of-care diagnostics.


Tuberculosis | 2012

Mycobacterium tuberculosis – Heterogeneity revealed through whole genome sequencing

Christopher B. Ford; Karina Yusim; Tom Ioerger; Shihai Feng; Michael R. Chase; Mary Greene; Bette T. Korber; Sarah M. Fortune

The emergence of whole genome sequencing (WGS) technologies as primary research tools has allowed for the detection of genetic diversity in Mycobacterium tuberculosis (Mtb) with unprecedented resolution. WGS has been used to address a broad range of topics, including the dynamics of evolution, transmission and treatment. Here, we have analyzed 55 publically available genomes to reconstruct the phylogeny of Mtb, and we have addressed complications that arise during the analysis of publically available WGS data. Additionally, we have reviewed the application of WGS to the study of Mtb and discuss those areas still to be addressed, moving from global (phylogeography), to local (transmission chains and circulating strain diversity), to the single patient (clonal heterogeneity) and to the bacterium itself (evolutionary studies). Finally, we discuss the current WGS approaches, their strengths and limitations.


PLOS Pathogens | 2012

Distinct Effects on Diversifying Selection by Two Mechanisms of Immunity against Streptococcus pneumoniae

Yuan Li; Todd Gierahn; Claudette M. Thompson; Krzysztof Trzciński; Christopher B. Ford; Nicholas J. Croucher; Paulo Gouveia; Jessica B. Flechtner; Richard Malley; Marc Lipsitch

Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organisms transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4+ TH17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether TH17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4+ TH17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4+ TH17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the TH17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that TH17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design.


Nature Genetics | 2015

DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader

Jeremy M. Rock; Ulla F. Lang; Michael R. Chase; Christopher B. Ford; Elias R. Gerrick; Richa Gawande; Mireia Coscolla; Sebastien Gagneux; Sarah M. Fortune; Meindert H. Lamers

The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3′–5′ exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain–mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.


BMC Genomics | 2013

The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection

Mark N Ragheb; Christopher B. Ford; Michael R. Chase; Philana Ling Lin; JoAnne L. Flynn; Sarah M. Fortune

BackgroundMycobacterial interspersed repetitive units (MIRUs) are minisatellites within the Mycobacterium tuberculosis (Mtb) genome. Copy number variation (CNV) in MIRU loci is used for epidemiological typing, making the rate of variation important for tracking the transmission of Mtb strains. In this study, we developed and assessed a whole-genome sequencing (WGS) approach to detect MIRU CNV in Mtb. We applied this methodology to a panel of Mtb strains isolated from the macaque model of tuberculosis (TB), the animal model that best mimics human disease. From these data, we have estimated the rate of MIRU variation in the host environment, providing a benchmark rate for future epidemiologic work.ResultsWe assessed variation at the 24 MIRU loci used for typing in a set of Mtb strains isolated from infected cynomolgus macaques. We previously performed WGS of these strains and here have applied both read depth (RD) and paired-end mapping (PEM) metrics to identify putative copy number variants. To assess the relative power of these approaches, all MIRU loci were resequenced using Sanger sequencing. We detected two insertion/deletion events both of which could be identified as candidates by PEM criteria. With these data, we estimate a MIRU mutation rate of 2.70 × 10-03 (95% CI: 3.30 × 10-04- 9.80 × 10-03) per locus, per year.ConclusionOur results represent the first experimental estimate of the MIRU mutation rate in Mtb. This rate is comparable to the highest previous estimates gathered from epidemiologic data and meta-analyses. Our findings allow for a more rigorous interpretation of data gathered from MIRU typing.


Journal of Biological Chemistry | 2016

Rifampin Resistance Mutations are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis

Nivedita Lahiri; Rupal R. Shah; Emilie Layre; David C. Young; Christopher B. Ford; Megan Murray; Sarah M. Fortune; D. Branch Moody

Global control of tuberculosis has become increasingly complicated with the emergence of multidrug-resistant strains of Mycobacterium tuberculosis. First-line treatments are anchored by two antibiotics, rifampin and isoniazid. Most rifampin resistance occurs through the acquisition of missense mutations in the rifampin resistance-determining region, an 81-base pair region encoding the rifampin binding site on the β subunit of RNA polymerase (rpoB). Although these mutations confer a survival advantage in the presence of rifampin, they may alter the normal process of transcription, thereby imposing significant fitness costs. Because the downstream biochemical consequences of the rpoB mutations are unknown, we used an organism-wide screen to identify the number and types of lipids changed after rpoB mutation. A new mass spectrometry-based profiling platform systematically compared ∼10,000 cell wall lipids in a panel of rifampin-resistant mutants within two genetically distinct strains, CDC1551and W-Beijing. This unbiased lipidomic survey detected quantitative alterations (>2-fold, p < 0.05) in more than 100 lipids in each mutant. By focusing on molecular events that change among most mutants and in both genetic backgrounds, we found that rifampin resistance mutations lead to altered concentrations of mycobactin siderophores and acylated sulfoglycolipids. These findings validate a new organism-wide lipidomic analysis platform for drug-resistant mycobacteria and provide direct evidence for characteristic remodeling of cell wall lipids in rifampin-resistant strains of M. tuberculosis. The specific links between rifampin resistance and named lipid factors provide diagnostic and therapeutic targets that may be exploited to address the problem of drug resistance.


Archive | 2011

Guidance for the use of substitute prescribing in the treatment of opioid dependence in primary care.

Christopher B. Ford; Kate Halliday; Euan Lawson; Elsa Browne

Collaboration


Dive into the Christopher B. Ford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Young

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge