Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher B. Kaelin is active.

Publication


Featured researches published by Christopher B. Kaelin.


Journal of Clinical Investigation | 2005

PI3K integrates the action of insulin and leptin on hypothalamic neurons

Allison W. Xu; Christopher B. Kaelin; Kiyoshi Takeda; Shizuo Akira; Michael W. Schwartz; Gregory S. Barsh

Central control of energy balance depends on the ability of proopiomelanocortin (POMC) or agouti-related protein (Agrp) hypothalamic neurons to sense and respond to changes in peripheral energy stores. Leptin and insulin have been implicated as circulating indicators of adiposity, but it is not clear how changes in their levels are perceived or integrated by individual neuronal subtypes. We developed mice in which a fluorescent reporter for PI3K activity is targeted to either Agrp or POMC neurons and used 2-photon microscopy to measure dynamic regulation of PI3K by insulin and leptin in brain slices. We show that leptin and insulin act in parallel to stimulate PI3K in POMC neurons but in opposite ways on Agrp neurons. These results suggest a new view of hypothalamic circuitry, in which the effects of leptin and insulin are integrated by anorexigenic but not by orexigenic neurons.


Science | 2007

A β-Defensin Mutation Causes Black Coat Color in Domestic Dogs

Sophie I. Candille; Christopher B. Kaelin; Bruce M. Cattanach; Bin Yu; Darren A. Thompson; Matthew A. Nix; Julie A. Kerns; S. M. Schmutz; Glenn L. Millhauser; Gregory S. Barsh

Genetic analysis of mammalian color variation has provided fundamental insight into human biology and disease. In most vertebrates, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls pigment type-switching, but in domestic dogs, a third gene is implicated, the K locus, whose genetic characteristics predict a previously unrecognized component of the melanocortin pathway. We identify the K locus as β-defensin 103 (CBD103) and show that its protein product binds with high affinity to the Mc1r and has a simple and strong effect on pigment type-switching in domestic dogs and transgenic mice. These results expand the functional role of β-defensins, a protein family previously implicated in innate immunity, and identify an additional class of ligands for signaling through melanocortin receptors.


PLOS Biology | 2005

Effects of hypothalamic neurodegeneration on energy balance

Allison W. Xu; Christopher B. Kaelin; Gregory J. Morton; Kayoko Ogimoto; Kimber L. Stanhope; James L. Graham; Denis G. Baskin; Peter J. Havel; Michael W. Schwartz; Gregory S. Barsh

Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp) or proopiomelanocortin (Pomc), neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging.


Science | 2012

Specifying and sustaining pigmentation patterns in domestic and wild cats

Christopher B. Kaelin; Xiao Xu; Lewis Z. Hong; Victor A. David; Kelly A. McGowan; Anne Schmidt-Küntzel; Melody E. Roelke; Javier Pino; Joan Pontius; Gregory M. Cooper; Hermogenes Manuel; William F. Swanson; Laurie Marker; Cindy Kim Harper; Ann Van Dyk; Bisong Yue; James C. Mullikin; Wesley C. Warren; Eduardo Eizirik; Lidia Kos; Stephen J. O’Brien; Gregory S. Barsh; Marilyn Menotti-Raymond

What Kitty Shares with Kings Although long-studied, the underlying basis of mammalian coat patterns remains unclear. By studying a large number of cat species and varieties, Kaelin et al. (p. 1536) identified two genes, Taqpep and Edn3, as critical factors in the development of feline pigment patterns. Mutations in Taqpep are responsible for the blotched tabby pattern in domestic cats and the unusual coat of wild king cheetahs. Gene expression patterns in cat and cheetah skin suggest that Edn3 is a likely regulator of felid hair color. The findings support a common model for coat and pigment pattern formation in domestic and wild cats. The genes specifying tabby cat coat patterns also affect big cats, including king cheetahs. Color markings among felid species display both a remarkable diversity and a common underlying periodicity. A similar range of patterns in domestic cats suggests a conserved mechanism whose appearance can be altered by selection. We identified the gene responsible for tabby pattern variation in domestic cats as Transmembrane aminopeptidase Q (Taqpep), which encodes a membrane-bound metalloprotease. Analyzing 31 other felid species, we identified Taqpep as the cause of the rare king cheetah phenotype, in which spots coalesce into blotches and stripes. Histologic, genomic expression, and transgenic mouse studies indicate that paracrine expression of Endothelin3 (Edn3) coordinates localized color differences. We propose a two-stage model in which Taqpep helps to establish a periodic pre-pattern during skin development that is later implemented by differential expression of Edn3.


Annual Review of Animal Biosciences | 2013

Genetics of pigmentation in dogs and cats.

Christopher B. Kaelin; Gregory S. Barsh

Color variation in companion animals has long been of interest to the breeding and scientific communities. Simple traits, like black versus brown or yellow versus black, have helped to explain principles of transmission genetics and continue to serve as models for studying gene action and interaction. We present a molecular genetic review of pigmentary variation in dogs and cats using a nomenclature and logical framework established by early leaders in the field. For most loci in which molecular variants have been identified (nine in dogs and seven in cats), homologous mutations exist in laboratory mice and/or humans. Exceptions include the K locus in dogs and the Tabby locus in cats, which give rise to alternating stripes or marks of different color, and which illustrate the continued potential of coat color genetics to provide insight into areas that transcend pigment cell biology.


International Journal of Obesity | 2008

New ligands for melanocortin receptors

Christopher B. Kaelin; Sophie I. Candille; Bin Yu; Peter K. Jackson; Darren A. Thompson; M A Nix; Jonathan Binkley; Glenn L. Millhauser; Gregory S. Barsh

Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, α-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the β-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.


Journal of Molecular Biology | 2010

Loop-swapped chimeras of the agouti-related protein and the agouti signaling protein identify contacts required for melanocortin 1 receptor selectivity and antagonism.

Mira P. Patel; Camila S. Cribb Fabersunne; Yingkui Yang; Christopher B. Kaelin; Gregory S. Barsh; Glenn L. Millhauser

Agouti-related protein (AgRP) and agouti signaling protein (ASIP) are homologs that play critical roles in energy balance and pigmentation, respectively, by functioning as antagonistic ligands at their cognate melanocortin receptors. Signaling specificity is mediated in part through receptor binding selectivity brought about by alterations in the cysteine-rich carboxy-terminal domains of the ligands. AgRP binds with high affinity to the melanocortin 3 receptor and the melanocortin 4 receptor, but not to the melanocortin 1 receptor (MC1R), whereas ASIP binds with high affinity to all three receptors. This work explores the structural basis for receptor selectivity by studying chimeric proteins developed by interchanging loops between the cysteine-rich domain of ASIP and the cysteine-rich domain of AgRP. Binding data demonstrate that melanocortin 4 receptor responds to all chimeras and is therefore highly tolerant of gross loop changes. By contrast, MC1R responds primarily to those chimeras with a sequence close to that of wild-type ASIP. Further analysis of binding and functional data suggests that the ASIP C-terminal loop (a six-amino-acid segment closed by the final disulfide bond) is essential for high-affinity MC1R binding and inverse agonism. Comparison with previously published molecular models suggests that this loop makes contact with the first extracellular loop of MC1R through a series of key hydrophobic interactions.


Genetics | 2009

Genetics of Sex-linked yellow in the Syrian Hamster

Azita Alizadeh; Lewis Z. Hong; Christopher B. Kaelin; Terje Raudsepp; Hermogenes Manuel; Gregory S. Barsh

Alternating patches of black and yellow pigment are a ubiquitous feature of mammalian color variation that contributes to camouflage, species recognition, and morphologic diversity. X-linked determinants of this pattern—recognized by variegation in females but not in males—have been described in the domestic cat as Orange, and in the Syrian hamster as Sex-linked yellow (Sly), but are curiously absent from other vertebrate species. Using a comparative genomic approach, we develop molecular markers and a linkage map for the euchromatic region of the Syrian hamster X chromosome that places Sly in a region homologous to the centromere-proximal region of human Xp. Comparison to analogous work carried out for Orange in domestic cats indicates, surprisingly, that the cat and hamster mutations lie in nonhomologous regions of the X chromosome. We also identify the molecular cause of recessively inherited black coat color in hamsters (historically referred to as nonagouti) as a Cys115Tyr mutation in the Agouti gene. Animals doubly mutant for Sly and nonagouti exhibit a Sly phenotype. Our results indicate that Sly represents a melanocortin pathway component that acts similarly to, but is genetically distinct from, Mc1r and that has implications for understanding both the evolutionary history and the mutational mechanisms of pigment-type switching.


The Journal of Neuroscience | 2013

Coordinated Regulation of Hepatic Energy Stores by Leptin and Hypothalamic Agouti-Related Protein

James P. Warne; Sofie S. Nielsen; Louise E. Olofsson; Christopher B. Kaelin; Streamson C. Chua; Gregory S. Barsh; Suneil K. Koliwad; Allison W. Xu

Like obesity, prolonged food deprivation induces severe hepatic steatosis; however, the functional significance of this phenomenon is not well understood. In this study, we show that the fall in plasma leptin concentration during fasting is required for the development of hepatic steatosis in mice. Removal of leptin receptors from AGRP neurons diminishes fasting-induced hepatic steatosis. Furthermore, the suppressive effects of leptin on fasting-induced hepatic steatosis are absent in mice lacking the gene encoding agouti-related protein (Agrp), suggesting that this function of leptin is mediated by AGRP. Prolonged fasting leads to suppression of hepatic sympathetic activity, increased expression of acyl CoA:diacylglycerol acyltransferase-2 in the liver, and elevation of hepatic triglyceride content and all of these effects are blunted in the absence of AGRP. AGRP deficiency, despite having no effects on feeding or body adiposity in the free-fed state, impairs triglyceride and ketone body release from the liver during prolonged fasting. Furthermore, reducing CNS Agrp expression in wild-type mice by RNAi protected against the development of hepatic steatosis not only during starvation, but also in response to consumption of a high-fat diet. These findings identify the leptin-AGRP circuit as a critical modulator of hepatic triglyceride stores in starvation and suggest a vital role for this circuit in sustaining the supply of energy from the liver to extrahepatic tissues during periods of prolonged food deprivation.


Scientific Reports | 2017

Early-onset progressive retinal atrophy associated with an IQCB1 variant in African black-footed cats (Felis nigripes)

Annie Oh; Jacqueline W. Pearce; Barbara Gandolfi; Erica K. Creighton; William K. Suedmeyer; Michael Selig; Ann P. Bosiack; Leilani J. Castaner; Ellen B. Belknap; Leslie A. Lyons; Danielle Aderdein; Paulo C. Alves; Gregory S. Barsh; Holly C. Beale; Adam R. Boyko; Marta Castelhano; Patricia Chan; N. Matthew Ellinwood; Dorian J. Garrick; Christopher R Helps; Christopher B. Kaelin; Tosso Leeb; Hannes Lohi; Maria Longeri; Richard Malik; Michael J. Montague; John S. Munday; William J. Murphy; Niels C. Pedersen; Max F. Rothschild

African black-footed cats (Felis nigripes) are endangered wild felids. One male and full-sibling female African black-footed cat developed vision deficits and mydriasis as early as 3 months of age. The diagnosis of early-onset progressive retinal atrophy (PRA) was supported by reduced direct and consensual pupillary light reflexes, phenotypic presence of retinal degeneration, and a non-recordable electroretinogram with negligible amplitudes in both eyes. Whole genome sequencing, conducted on two unaffected parents and one affected offspring was compared to a variant database from 51 domestic cats and a Pallas cat, revealed 50 candidate variants that segregated concordantly with the PRA phenotype. Testing in additional affected cats confirmed that cats homozygous for a 2 base pair (bp) deletion within IQ calmodulin-binding motif-containing protein-1 (IQCB1), the gene that encodes for nephrocystin-5 (NPHP5), had vision loss. The variant segregated concordantly in other related individuals within the pedigree supporting the identification of a recessively inherited early-onset feline PRA. Analysis of the black-footed cat studbook suggests additional captive cats are at risk. Genetic testing for IQCB1 and avoidance of matings between carriers should be added to the species survival plan for captive management.

Collaboration


Dive into the Christopher B. Kaelin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison W. Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ira Gantz

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Nix

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge