Christopher B. Pattillo
LSU Health Sciences Center Shreveport
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher B. Pattillo.
Circulation Research | 2009
John W. Calvert; Saurabh Jha; Susheel Gundewar; John W. Elrod; Christopher B. Pattillo; Christopher G. Kevil; David J. Lefer
Rationale: The recent emergence of hydrogen sulfide (H2S) as a potent cardioprotective signaling molecule necessitates the elucidation of its cytoprotective mechanisms. Objective: The present study evaluated potential mechanisms of H2S-mediated cardioprotection using an in vivo model of pharmacological preconditioning. Methods and Results: H2S (100 &mgr;g/kg) or vehicle was administered to mice via an intravenous injection 24 hours before myocardial ischemia. Treated and untreated mice were then subjected to 45 minutes of myocardial ischemia followed by reperfusion for up to 24 hours, during which time the extent of myocardial infarction was evaluated, circulating troponin I levels were measured, and the degree of oxidative stress was evaluated. In separate studies, myocardial tissue was collected from treated and untreated mice during the early (30 minutes and 2 hours) and late (24 hours) preconditioning periods to evaluate potential cellular targets of H2S. Initial studies revealed that H2S provided profound protection against ischemic injury as evidenced by significant decreases in infarct size, circulating troponin I levels, and oxidative stress. During the early preconditioning period, H2S increased the nuclear localization of Nrf2, a transcription factor that regulates the gene expression of a number of antioxidants and increased the phosphorylation of protein kinase Cϵ and STAT-3. During the late preconditioning period, H2S increased the expression of antioxidants (heme oxygenase-1 and thioredoxin 1), increased the expression of heat shock protein 90, heat shock protein 70, Bcl-2, Bcl-xL, and cyclooxygenase-2 and also inactivated the proapoptogen Bad. Conclusions: These results reveal that the cardioprotective effects of H2S are mediated in large part by a combination of antioxidant and antiapoptotic signaling.
Free Radical Biology and Medicine | 2011
Xinggui Shen; Christopher B. Pattillo; Sibile Pardue; Shyamal C. Bir; Rui Wang; Christopher G. Kevil
The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H₂S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H₂S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris-HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6 × 250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Dinesh Kumar; Billy Glynn Branch; Christopher B. Pattillo; Jay Hood; Stephen Thoma; Stephen Simpson; Sandra Illum; Neeraj Arora; John H. Chidlow; Will Langston; Xinjun Teng; David J. Lefer; Rakesh P. Patel; Christopher G. Kevil
Chronic tissue ischemia due to defective vascular perfusion is a hallmark feature of peripheral artery disease for which minimal therapeutic options exist. We have reported that sodium nitrite therapy exerts cytoprotective effects against acute ischemia/reperfusion injury in both heart and liver, consistent with the model of bioactive NO formation from nitrite during ischemic stress. Here, we test the hypothesis that chronic sodium nitrite therapy can selectively augment angiogenic activity and tissue perfusion in the murine hind-limb ischemia model. Various therapeutic doses (8.25–3,300 μg/kg) of sodium nitrite or PBS were administered. Sodium nitrite significantly restored ischemic hind-limb blood flow in a time-dependent manner, with low-dose sodium nitrite being most effective. Nitrite therapy significantly increased ischemic limb vascular density and stimulated endothelial cell proliferation. Remarkably, the effects of sodium nitrite therapy were evident within 3 days of the ischemic insult demonstrating the potency and efficacy of chronic sodium nitrite therapy. Sodium nitrite therapy also increased ischemic tissue nitrite and NO metabolites compared to nonischemic limbs. Use of the NO scavenger carboxy PTIO completely abolished sodium nitrite-dependent ischemic tissue blood flow and angiogenic activity consistent with nitrite reduction to NO being the proangiogenic mechanism. These data demonstrate that chronic sodium nitrite therapy is a recently discovered therapeutic treatment for peripheral artery disease and critical limb ischemia.
Journal of the American Heart Association | 2012
Shyamal C. Bir; Gopi Krishna Kolluru; Paul McCarthy; Xinggui Shen; Sibile Pardue; Christopher B. Pattillo; Christopher G. Kevil
Background Hydrogen sulfide (H2S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H2S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H2S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses. Methods and Results The unilateral, permanent femoral artery ligation model of hind‐limb ischemia was performed in C57BL/6J wild‐type and endothelial NO synthase–knockout mice to evaluate exogenous H2S effects on NO bioavailability and ischemic revascularization. We found that H2S selectively restored chronic ischemic tissue function and viability by enhancing NO production involving both endothelial NO synthase and nitrite reduction mechanisms. Importantly, H2S increased ischemic tissue xanthine oxidase activity, hind‐limb blood flow, and angiogenesis, which were blunted by the xanthine oxidase inhibitor febuxostat. H2S treatment increased ischemic tissue and endothelial cell hypoxia‐inducible factor‐1α expression and activity and vascular endothelial growth factor protein expression and function in a NO‐dependent manner that was required for ischemic vascular remodeling. Conclusions These data demonstrate that H2S differentially regulates NO metabolism during chronic tissue ischemia, highlighting novel biochemical pathways to increase NO bioavailability for ischemic vascular remodeling.
Cardiovascular Research | 2010
Prasanna Venkatesh; Christopher B. Pattillo; Billy G. Branch; Jay Hood; Steven Thoma; Sandra Illum; Sibile Pardue; Xinjun Teng; Rakesh P. Patel; Christopher G. Kevil
AIMS Anti-platelet agents, such as dipyridamole, have several clinical benefits for peripheral artery disease with the speculation of angiogenic potential that could preserve ischaemic tissue viability, yet the effect of dipyridamole on ischaemic arteriogenesis or angiogenesis is unknown. Here we test the hypothesis that dipyridamole therapy augments arteriolar vessel development and function during chronic ischaemia. METHODS AND RESULTS Mice were treated with 200 mg/kg dipyridamole twice daily to achieve therapeutic plasma levels (0.8-1.2 microg/mL). Chronic hindlimb ischaemia was induced by permanent femoral artery ligation followed by measurement of tissue perfusion using laser Doppler blood flow along with quantification of vascular density, cell proliferation, and activation of nitric oxide (NO) metabolism. Dipyridamole treatment quickly restored ischaemic hindlimb blood flow, increased vascular density and cell proliferation, and enhanced collateral artery perfusion compared with control treatments. The beneficial effects of dipyridamole on blood flow and vascular density were dependent on NO production as dipyridamole did not augment ischaemic tissue reperfusion, vascular density, or endothelial cell proliferation in endothelial NO synthase (eNOS)-deficient mice. Blood and tissue nitrite levels were significantly higher in dipyridamole-treated mice compared with controls and eNOS(-/-) mice, verifying increased NO production that was regulated in a PKA-dependent manner. CONCLUSION Dipyridamole augments nitrite/NO production, leading to enhanced arteriogenesis activity and blood perfusion in ischaemic limbs. Together, these data suggest that dipyridamole can augment ischaemic vessel function and restore blood flow, which may be beneficial in peripheral artery disease.
Cardiovascular Research | 2011
Christopher B. Pattillo; Shyamal C. Bir; Venkat Rajaram; Christopher G. Kevil
Ischaemic tissue damage represents the ultimate form of tissue pathophysiology due to cardiovascular disease, which is the leading cause of morbidity and mortality across the globe. A significant amount of basic research and clinical investigation has been focused on identifying cellular and molecular pathways to alleviate tissue damage and dysfunction due to ischaemia and subsequent reperfusion. Over many years, the gaseous molecule nitric oxide (NO) has emerged as an important regulator of cardiovascular health as well as protector against tissue ischaemia and reperfusion injury. However, clinical translation of NO therapy for these pathophysiological conditions has not been realized for various reasons. Work from our laboratory and several others suggests that a new form of NO-associated therapy may be possible through the use of nitrite anion (sodium nitrite), a prodrug which can be reduced to NO in ischaemic tissues. In this manner, nitrite anion serves as a highly selective NO donor in ischaemic tissues without substantially altering otherwise normal tissue. This surprising and novel discovery has reinvigorated hopes for effectively restoring NO bioavailability in vulnerable tissues while continuing to reveal the complexity of NO biology and metabolism within the cardiovascular system. However, some concerns may exist regarding the effect of nitrite on carcinogenesis. This review highlights the emergence of nitrite anion as a selective NO prodrug for ischaemic tissue disorders and discusses the potential therapeutic utility of this agent for peripheral vascular disease.
Diabetes | 2014
Shyamal C. Bir; Christopher B. Pattillo; Sibile Pardue; Gopi Krishna Kolluru; Xinggui Shen; Tony Giordano; Christopher G. Kevil
Nitrite anion has been demonstrated to be a prodrug of nitric oxide (NO) with positive effects on tissue ischemia/reperfusion injury, cytoprotection, and vasodilation. However, effects of nitrite anion therapy for ischemic tissue vascular remodeling during diabetes remain unknown. We examined whether sodium nitrite therapy altered ischemic revascularization in BKS-Leprdb/db mice subjected to permanent unilateral femoral artery ligation. Sodium nitrite therapy completely restored ischemic hind limb blood flow compared with nitrate or PBS therapy. Importantly, delayed nitrite therapy 5 days after ischemia restored ischemic limb blood flow in aged diabetic mice. Restoration of blood flow was associated with increases in ischemic tissue angiogenesis activity and cell proliferation. Moreover, nitrite but not nitrate therapy significantly prevented ischemia-mediated tissue necrosis in aged mice. Nitrite therapy significantly increased ischemic tissue vascular endothelial growth factor (VEGF) protein expression that was essential for nitrite-mediated reperfusion of ischemic hind limbs. Nitrite significantly increased ischemic tissue NO bioavailability along with concomitant reduction of superoxide formation. Lastly, nitrite treatment also significantly stimulated hypoxic endothelial cell proliferation and migration in the presence of high glucose in an NO/VEGF-dependent manner. These results demonstrate that nitrite therapy effectively stimulates ischemic tissue vascular remodeling in the setting of metabolic dysfunction that may be clinically useful.
Cardiovascular Therapeutics | 2015
David J. Polhemus; Zhen Li; Christopher B. Pattillo; Gabriel Gojon; Tony Giordano; Henry Krum
Summary Recent studies demonstrate robust molecular cross talk and signaling between hydrogen sulfide (H2S) and nitric oxide (NO). Heart failure (HF) patients are deficient in both H2S and NO, two molecules that are critical for cardiovascular homeostasis. A phase I clinical trial of a novel H2S prodrug (SG1002) was designed to assess safety and changes in H2S and NO bioavailability in healthy and HF subjects. Healthy subjects (n = 7) and heart failure patients (n = 8) received oral SG1002 treatment in escalating dosages of 200, 400, and 800 mg twice daily for 7 days for each dose. Safety and tolerability were assessed by physical examination, vital signs, and ECG analysis. Plasma samples were collected during a 24‐h period each week for H2S and NO analysis. BNP and glutathione levels were analyzed as markers of cardiac health and redox status. Administration of SG1002 resulted in increased H2S levels in healthy subjects. We also observed increased H2S levels in HF subjects following 400 mg SG1002. Nitrite, a metabolite of NO, was increased in both healthy and HF patients receiving 400 mg and 800 mg SG1002. HF subjects treated with SG1002 displayed stable drug levels over the course of the trial. SG1002 was safe and well tolerated at all doses in both healthy and HF subjects. These data suggest that SG1002 increases blood H2S levels and circulating NO bioavailability. The finding that SG1002 attenuates increases in BNP in HF patients suggests that this novel agent warrants further study in a larger clinical study.
Free Radical Biology and Medicine | 2011
Christopher B. Pattillo; Shyamal C. Bir; Billy G. Branch; Eric Greber; Xinggui Shen; Sibile Pardue; Rakesh P. Patel; Christopher G. Kevil
Dipyridamole anti-platelet therapy has previously been suggested to ameliorate chronic tissue ischemia in healthy animals. However, it is not known if dipyridamole therapy represents a viable approach to alleviating chronic peripheral tissue ischemia associated with type 2 diabetes. Here we examine the hypothesis that dipyridamole treatment restores reperfusion of chronic hind-limb ischemia in the murine B6.BKS-Lepr(db/db) diabetic model. Dipyridamole therapy quickly rectified ischemic hind-limb blood flow to near preligation levels within 3 days of the start of therapy. Restoration of ischemic tissue blood flow was associated with increased vascular density and endothelial cell proliferation observed only in ischemic limbs. Dipyridamole significantly increased total nitric oxide metabolite levels in tissue, which were not associated with changes in endothelial NO synthase expression or phosphorylation. Interestingly, dipyridamole therapy significantly decreased ischemic tissue superoxide and protein carbonyl levels, identifying a dominant antioxidant mechanistic response. Dipyridamole therapy also moderately reduced diabetic hyperglycemia and attenuated development of dyslipidemia over time. Together, these data reveal that dipyridamole therapy is an effective modality for the treatment of chronic tissue ischemia during diabetes and highlights the importance of dipyridamole antioxidant activity in restoring tissue NO bioavailability during diabetes.
Radiation Research | 2007
Ramin Ansari; M. Waleed Gaber; Bin Wang; Christopher B. Pattillo; Curtis Miyamoto; Mohammad F. Kiani
Abstract Ansari, R., Gaber, M. W., Wang, B., Pattillo, C. B., Miyamoto, C. and Kiani, M. F. Anti-TNFA (TNF-α) Treatment Abrogates Radiation-Induced Changes in Vascular Density and Tissue Oxygenation. Radiat. Res. 167, 80–86 (2007). Ionizing radiation significantly alters the structure and function of microvasculature, which regulates delivery of oxygen to brain tissue. Previous experimental and modeling studies have shown that tissue oxygenation patterns are significantly different in irradiated normal tissue compared to age-matched controls, and the differences are apparent as early as 3 days postirradiation. However, oxygen delivery to irradiated tissue recovers within 6 months postirradiation. Changes in perfusion and oxygenation were studied in a bilaterally (both cerebral hemispheres) and unilaterally (only one hemisphere) irradiated mouse brain model at 6 and 24 h as well as 3, 7, 30, 60 and 120 days postirradiation. The results indicate that significant changes in the number of perfused vessels (as measured by fluorescent DiOC7 staining) and anatomical vessels (as indicated by CD31 immunohistochemical staining) and tissue oxygenation (by immunohistochemical detection of a fluorescently conjugated monoclonal antibody to EF5) are most pronounced at 3 days postirradiation, while a degree of recovery is observed at later times. However, in the unilaterally irradiated animals, both irradiated and unirradiated (out-of-field) cerebral hemispheres showed similarly significant changes in oxygenation and/or perfusion compared to unirradiated controls. Anti-TNFA treatment inhibited radiation-induced local as well as abscopal effects in the brain tissue.