Christopher Beaumont
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher Beaumont.
Nature | 2001
Christopher Beaumont; Rebecca Anne Jamieson; M. H. Nguyen; B. Lee
Recent interpretations of Himalayan–Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence. Here we use coupled thermal–mechanical numerical models to show that these two processes—channel flow and ductile extrusion—may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan–Tibetan system.
Geology | 1993
Sean D. Willett; Christopher Beaumont; Philippe Fullsack
A mechanical model of crustal shortening and deformation driven by the relative convergence of rigid, underlying mantle plates explains many features of convergent orogens. Results based on numerical models and supported by sandbox models show that a Coulomb crustal layer subject to basal velocity boundary conditions corresponding to asymmetric detachment and subduction of the underlying mantle passes through three stages of orogenic growth: (1) block uplift bounded by step-up shear zones; (2) development of a low-taper wedge over the underthrusting mantle plate; and (3) development of a low-taperwedge overlying the overthrusting mantle plate and verging in the opposite direction. When modified by isostasy, basal viscous flow, surface erosion and denudation, and sedimentation, the resultant model orogens exhibit a variety of styles with characteristics in common with small, rapidly denuded orogens, large orogens with plateaus and extensional characteristics, and active subduction margins with doubly vergent accretionary wedges and deformed fore-arc basins.
Archive | 1992
Christopher Beaumont; Philippe Fullsack; Juliet Hamilton
Denudation has long been acknowledged as a process that contributes to the unroofing of compressional orogens. It has, however, mainly been considered as a passive process, not one that can dictate or control the tectonic evolution. This view prevails despite the knowledge that the style of deformation is controlled by the interplay of gravitational and tectonic stresses: an interplay that is sensitive to the mass removed by denudation.
Journal of Geophysical Research | 1994
Henk Kooi; Christopher Beaumont
Experiments with a surface processes model of large-scale (1–1000 km) long-term (1–100 m.y.) erosional denudation are used to establish the controls on the evolution of a model escarpment that is related to the rifting of a continent. The model describes changes in topographic form as a result of simultaneous short- and long-range mass transport representing hillslope (diffusive) processes and fluvial transport (advection), respectively. Fluvial entrainment is modeled as a first-order kinetic reaction which reflects the credibility of the substrate, and therefore the fluvial system is not necessarily carrying at capacity. One-dimensional and planform models demonstrate that the principal controls on the evolution of an initially steep model escarpment are (1) antecedent topography/drainage; (2) the timescale (or equivalently a length scale) in the fluvial entrainment reaction; (3) the flexural response of the lithosphere to denudation; and (4) the relative efficiencies of the short- and long-range transport processes. When rainfall and substrate lithology are uniform, a significant amount of discharge draining over the escarpment top causes it to degrade. Only when the top of the model escarpment coincides with a drainage divide can escarpment retreat occur for these conditions. An additional requirement for retreat of a model escarpment without decline is a long reaction time scale for fluvial entrainment. This corresponds to a substrate that is hard to detach by fluvial erosion, and therefore to fluvial erosion that is not transport limited. Continuous backtilting of an escarpment due to flexural isostatic uplift in response to denudational unloading helps maintain the scarp top as a divide. It is essential if the escarpment gradient is to be preserved during retreat in a uniform lithology. Low flexural rigidities promote steep and slowly retreating escarpments. For given rainfall and substrate conditions, the morphology of a retreating model escarpment is determined by the ratio of the short-range diffusive and long-range advective transport efficiencies. A low ratio (which is interpreted to correspond to a relatively arid climate and weathering-limited conditions) promotes steep, sharp-topped escarpments with straight main slopes, and escarpment retreat occurs over a wide range of height scales. A high ratio (interpreted to correspond to a more humid, temperate climate) produces a convex upper slope, and concave lower slope morphology and only major escarpments are predicted to preserve a high scarp gradient. Lithological contrasts in the model produce more complex morphologies and predict the formation of scarps crowned by an erosionally resistant caprock. However, resistant caprocks are not an essential requirement for model scarps to retreat. We conclude that the inferred controls and model behavior are both consistent with the present-day morphology of rifted continental margins and with modern conceptual models of landscape evolution.
Geology | 1989
Jean Braun; Christopher Beaumont
Rift-flank uplifts and the breakup or postrift unconformity are characteristic features of many rifted, passive, or Atlantic-type continental margins, but are not predicted as primary features of simple lithospheric stretching models. The explanations that have been proposed for their origin remain controversial, either because they call upon special circumstances or because they are difficult to test. Plane-strain finite element models are used in this paper to explore the dynamics of lithospheric necking during rifting and rupture. The results agree with the conceptual interpretation that uplift of the rift boundaries to form flank mountains and uplift of the basin responsible for the breakup unconformity are related consequences of regional isostatic compensation of mass that is redistributed during the necking and rupture phases. Although the amplitudes of these uplifts depend on the model parameter values, the relations between and relative signs of these two effects appear to be fundamental. The explanation we propose may have been missed in recent studies because there has been a tendency to concentrate on kinematic stretching models, which assume local isostatic equilibrium through out the rifting process. Such an approach is predicated on the assumption that the lithosphere has an insignificant strength or flexural rigidity during extension, which is not true if our explanation is correct.
Nature | 2011
Ritske S. Huismans; Christopher Beaumont
Uniform lithospheric extension predicts basic properties of non-volcanic rifted margins but fails to explain other important characteristics. Significant discrepancies are observed at ‘type I’ margins (such as the Iberia–Newfoundland conjugates), where large tracts of continental mantle lithosphere are exposed at the sea floor, and ‘type II’ margins (such as some ultrawide central South Atlantic margins), where thin continental crust spans wide regions below which continental lower crust and mantle lithosphere have apparently been removed. Neither corresponds to uniform extension. Instead, either crust or mantle lithosphere has been preferentially removed. Using dynamical models, we demonstrate that these margins are opposite end members: in type I, depth-dependent extension results in crustal-necking breakup before mantle-lithosphere breakup and in type II, the converse is true. These two-layer, two-stage breakup behaviours explain the discrepancies and have implications for the styles of the associated sedimentary basins. Laterally flowing lower-mantle cratonic lithosphere may underplate some type II margins, thereby contributing to their anomalous characteristics.
Journal of Geophysical Research | 2000
Christopher Beaumont; Josep Anton Muñoz; Juliet Hamilton; Philippe Fullsack
Geodynamical numerical modeling has been combined with crustal structural restoration of the central Pyrenees in order to gain insight into fundamental processes that control the evolution of collisional orogens. Models are based on deformation of the crust by stresses transmitted upward from kinematic basal boundary conditions corresponding to the subduction of part of the lithosphere. The influence of inherited crustal heterogeneities, denudation, subcrustal loads, and crustal mechanical properties, consistent with well-constrained crustal partial restored cross sections of the central Pyrenees, is investigated by progressively incorporating them into model experiments. The primary result inferred from the modeling is that the asymmetry of the central Pyrenees double-wedge, seen as strain partitioning and in the morphological evolution, is a consequence of the asymmetric distribution of inherited crustal heterogeneity. The tectonic style of the central Pyrenees is the result of the inversion of the Early Cretaceous extensional fault system, during the early stages of the collision, and the reactivation of Hercynian heterogeneities during the late stages. Most of the upper crustal mass that entered the orogen during the calculated 165 km of convergence was accommodated by an increase of upper crustal cross sectional area or lost by denudation. To explain the upper crustal mass partitioning, as well as the geometry of the foreland basins and the preservation of synorogenic deposits in piggyback basins, a subduction load has to be applied to the models. Lower crust and mantle lithosphere were consumed by the mantle.
Journal of Geophysical Research | 1996
Henk Kooi; Christopher Beaumont
Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of “fundamental form,” which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.
Geological Society, London, Special Publications | 2006
Christopher Beaumont; M. H. Nguyen; Rebecca Anne Jamieson; Susan Ellis
Abstract Crustal-scale channel flow numerical models support recent interpretations of Himalayan—Tibetan tectonics proposing that gravitationally driven channel flows of low-viscosity, melt-weakened, middle crust can explain both outward growth of the Tibetan Plateau and ductile extrusion of the Greater Himalayan Sequence. We broaden the numerical model investigation to explore three flow modes: homogeneous channel flow (involving laterally homogeneous crust); heterogeneous channel flow (involving laterally heterogeneous lower crust that is expelled and incorporated into the mid-crustal channel flow); and the hot fold nappes style of flow (in which mid-/lower crust is forcibly expelled outward over a lower crustal indentor to create fold nappes that are inserted into the mid-crust). The three flow modes are members of a continuum in which the homogeneous mode is driven by gravitational forces but requires very weak channel material. The hot fold nappe mode is driven tectonically by, for example, collision with a strong crustal indentor and can occur in crust that is subcritical for homogeneous flows. The heterogeneous mode combines tectonic and gravitationally driven flows. Preliminary results also demonstrate the existence and behaviour of mid-crustal channels during advancing and retreating dynamical mantle lithosphere subduction. An orogen temperature—magnitude (T-M) diagram is proposed and the positions of orogens in T-M space that may exhibit the flow modes are described, together with the characteristic positions of a range of other orogen types.
Journal of Geophysical Research | 1996
Christopher Beaumont; Peter J.J. Kamp; Juliet Hamilton; Philippe Fullsack
The South Island zone of oblique continent-continent convergence occurs along a 400 km-long section of the modern Australia-Pacific plate boundary zone, across which about 50 km of shortening has been accommodated since about 10 Ma. The orogen comprises a central mountain range (Southern Alps) flanked on both sides by what are interpreted to be foreland basins. Two essential features that characterize the orogen are (1) the degree of denudation that accompanied deformation, and (2) a fundamental structural asymmetry. The architectural asymmetry of the orogen can be explained by plane strain, finite element models of continental convergence incorporating mantle subduction. Comparison of model and orogen polarity implies that Pacific plate mantle subducts. The models predict two crustal-scale dipping shear zones that form above the point where the Pacific mantle subducts. The localized one more distant from the incoming plate (retro-step-up shear zone) corresponds to the Alpine fault, whereas its conjugate (pro-step-up shear zone) corresponds to the distributed strain and thrusting along the eastern margin of the mountain belt. Parameters that modify the model boundary conditions (top surface, degree of denudation; basal zone, subduction load, crust-mantle velocity discontinuity, subduction of lower crust, mantle retreat, and distributed decrease in mantle velocity) and the internal strength of the crust (two-layer crust with moderate coupling, temperature distribution, strain weakening) are varied in a series of numerical model calculations that establish the combination of material properties and boundary conditions that lead to different cross sectional architectures of the modeled collision zone. In turn, these are compared with observations about the South Island orogen. The calculations show how the style and extent of deformation across the whole orogen depend on the rheological properties of the crustal layer and on the balance between its internal strength and the combined effects of the boundary and gravitational stresses. North to south along-strike differences in the width and two-dimensional architecture of the orogen, simulated in the experiments by varying the model parameters, can be explained by a combination of southward increases in preconvergent crustal thickness, geothermal gradient, convergence, and potentially subduction retreat, with the added possibility of a southward decrease in the component of lower crustal subduction.