Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Bebbington is active.

Publication


Featured researches published by Christopher Bebbington.


Infection and Immunity | 2009

An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity.

Mark Baer; Teiji Sawa; Peter Flynn; Kenneth Luehrsen; David Martinez; Jeanine P. Wiener-Kronish; Geoffrey T. Yarranton; Christopher Bebbington

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that can cause acute lung injury and mortality through the delivery of exotoxins by the type III secretion system (TTSS). PcrV is an important structural protein of the TTSS. An engineered human antibody Fab fragment that binds to the P. aeruginosa PcrV protein with high affinity has been identified and has potent in vitro neutralization activity against the TTSS. The instillation of a single dose of Fab into the lungs of mice provided protection against lethal pulmonary challenge of P. aeruginosa and led to a substantial reduction of viable bacterial counts in the lungs. These results demonstrate that blocking of the TTSS by a Fab lacking antibody Fc-mediated effector functions can be sufficient for the effective clearance of pulmonary P. aeruginosa infection.


Cytotechnology | 2001

The Use of UCOE Vectors in Combination with a Preadapted Serum Free, Suspension Cell Line Allows for Rapid Production of Large Quantities of Protein

Trish Benton; Tim Chen; Michele McEntee; Brian Fox; David J. King; Robert Crombie; Thomas Thomas; Christopher Bebbington

UCOE vectors contain non-tissue specific chromatin-opening-elements that permit rapid expression of a protein in anintegration independent manner. Efficient expression can bederived from a single copy of an integrated gene site resulting ina higher percentage of cells expressing the marker gene in theselected pool in comparison to standard non-UCOE containingvectors. This, in combination with the utilization of a serum-free, suspension adapted parent cell line allows for rapidproduction of large quantities of protein in a short period oftime. Utilizing this system more than 300 mg of a recombinantantibody has been produced in less than 1 month from transfectionpools in shake flask. Selected subclones have been scaled intosmall bioreactors in less than 2 months, producing significantquantities of monoclonal antibody using a protocol generic for theparent cell line. The increased efficiency obtained with the UCOEvector reduces the number of transfectants which need to bescreened in order to obtain high productivity subclones.Transfection of a standard host cell line, preadapted to grow in alarge-scale setting, allows for rapid cell line developmentdecreasing the transition time from research into development andmanufacturing. Alternatively, the traditional approach of using aparent cell line which requires serum-free and suspensionadaptation after transfection further increases the need forscreening a large number of subclones, because many of thesubclones will not be able to grow under conditions that allowlarge-scale protein production. The use of a preadapted cell linecan reduce the time required to develop a cell line from months toweeks.


Blood | 2013

GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia

Eric Padron; Jeffrey S. Painter; Sateesh Kunigal; Adam W. Mailloux; Kathy L. McGraw; Jessica M. McDaniel; Eunhee Kim; Christopher Bebbington; Mark Baer; Geoffrey T. Yarranton; Jeffrey E. Lancet; Rami S. Komrokji; Omar Abdel-Wahab; Alan F. List; P.K. Epling-Burnette

Granulocyte-macrophage-colony-stimulating factor (GM-CSF) hypersensitivity is a hallmark of juvenile myelomonocytic leukemia (JMML) but has not been systematically shown in the related human disease chronic myelomonocytic leukemia (CMML). We find that primary CMML samples demonstrate GM-CSF-dependent hypersensitivity by hematopoietic colony formation assays and phospho-STAT5 (pSTAT5) flow cytometry compared with healthy donors. Among CMML patients, the pSTAT5 hypersensitive response positively correlated with high-risk disease, peripheral leukocytes, monocytes, and signaling-associated mutations. When compared with IL-3 and G-CSF, GM-CSF hypersensitivity was cytokine specific and thus a possible target for intervention in CMML. To explore this possibility, we treated primary CMML cells with KB003, a novel monoclonal anti-GM-CSF antibody, and JAK2 inhibitors. We found that an elevated proportion of immature GM-CSF receptor-α(R) subunit-expressing cells were present in the bone marrow myeloid compartment of CMML. In survival assays, we found that myeloid and monocytic progenitors were sensitive to GM-CSF signal inhibition. Our data indicate that a committed myeloid precursor expressing CD38 may represent the progenitor population with enhanced GM-CSF dependence in CMML, consistent with results in JMML. These preclinical data indicate that GM-CSF signaling inhibitors merit further investigation in CMML and that GM-CSFR expression on myeloid progenitors may be a biomarker for this therapy.


Current Opinion in Biotechnology | 2008

Antibodies for the treatment of bacterial infections: current experience and future prospects

Christopher Bebbington; Geoffrey T. Yarranton

Antibodies can be used for the prevention and treatment of bacterial infections in animal models of disease. Current antibody technology allows the generation of high affinity human/humanized antibodies that can be optimized for antibacterial activity and in vivo biodistribution and pharmacokinetics. Such antibodies have exquisite selectivity for their bacterial target antigen and promise efficacy and safety. Why are there no monoclonal antibody products approved for the treatment or prevention of bacterial infections? Can antibodies succeed where antibiotics are failing? Some antibody therapies are currently being evaluated in clinical trials but several have failed despite positive data in animal disease models. This review will discuss the pros and cons of antibody therapeutics targeted at bacterial infections.


Journal of Interferon and Cytokine Research | 2004

The Receptor for Type I IFNs Is Highly Expressed on Peripheral Blood B Cells and Monocytes and Mediates a Distinct Profile of Differentiation and Activation of These Cells

Sarah L. Pogue; Benjamin T. Preston; Joseph Stalder; Christopher Bebbington; Pina M. Cardarelli

Type I interferons (IFNs) are potent regulators of both innate and adaptive immunity. All type I IFNs bind to the same heterodimeric cell surface receptor composed of IFN-alpha receptor (IFNAR-1) and IFN-alpha/beta receptor (IFNAR-2) polypeptides. This study revealed that type I IFN receptor levels vary considerably on hematopoietic cells, with monocytes and B cells expressing the highest levels. Overnight treatment of peripheral blood mononuclear cells (PBMCs) with IFN-alpha2b or IFN-beta led to increased expression on monocytes and B cells of surface markers commonly associated with activated antigen-presenting cells (APCs), such as CD38, CD86, MHC class I, and MHC class II. Five-day exposure of adherent monocytes to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus IFN-alpha or IFN-beta caused the development of potent allostimulatory cells with morphology similar to that of myeloid dendritic cells (DCs) obtained from culture with GM-CSF and interleukin-4 (IL-4) but with distinct cell surface marker profiles and activity. In contrast to IL-4-derived DCs, IFN-alpha-derived DCs were CD14+, CD1a-, CD123+, CD32+, and CD38+ and expressed high levels of CD86 and MHC class II. Development of these cells was completely blocked by an antibody to IFNAR-1. Furthermore, activity of the type I IFN-derived DC in a mixed lymphocyte reaction (MLR) was consistently more potent than that of IL-4-derived DCs, especially at high responder/stimulator ratios. This MLR activity was abrogated by the addition of anti-IFNAR-1 antibody at the start of the DC culture. In contrast, there was no effect of anti-IFNAR-1 on IL-4-derived DCs, indicating that this is a distinct pathway of DC differentiation. These results suggest a potential role for anti-IFNAR-1 immunotherapy in autoimmune diseases, such as systemic lupus erythematosus (SLE), in which the action of excessive type I IFN on B cells and myeloid DCs may play a role in disease pathology.


Human Molecular Genetics | 2009

Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1-42 and suppresses microglial activity in a transgenic mouse model of Alzheimer's disease

Maria Manczak; Peizhong Mao; Kazuhiro Nakamura; Christopher Bebbington; Byung Park; P. Hemachandra Reddy

The purpose of our study was to investigate microglia and astrocytes that are associated with human mutant amyloid precursor protein and amyloid beta (Abeta). We investigated whether the anti-granulocyte-macrophage-colony stimulating factor (GM-CSF) antibody can suppress microglial activity and decrease Abeta production in Alzheimers disease transgenic mice (Tg2576 line). An antibody to mouse GM-CSF was introduced by intracerebroventricular (ICV) injections into the brains of 10-month-old Tg2576 male mice. We assessed the effect of several GM-CSF-associated cytokines on microglial activities and their association with Abeta using quantitative real-time RT-PCR, immunoblotting, immunohistochemistry analyses in anti-GM-CSF antibody-injected Tg2576 mice. Using sandwich ELISA technique, we measured intraneuronal Abeta in Tg2576 mice injected with GM-CSF antibody and PBS vehicle-injected control Tg2576 mice. Using double-labeling immunofluorescence analysis of intraneuronal Abeta, Abeta deposits and pro-inflammatory cytokines, we assessed the relationship between Abeta deposits and microglial markers in the Tg2576 mice, and also in the anti-GM-CSF antibody-injected Tg2576 mice. Our real-time RT-PCR analysis showed an increase in the mRNA expression of IL6, CD11c, IL1beta, CD40 and CD11b in the cerebral cortices of the Tg2576 mice compared with their littermate non-transgenic controls. Immunohistochemistry findings of microglial markers agreed with our real-time RT-PCR results. Interestingly, we found significantly decreased levels of activated microglia and Abeta deposits in anti-GM-CSF antibody-injected Tg2576 mice compared with PBS vehicle-injected Tg2576 mice. Findings from our real-time RT-PCR and immunoblotting analysis agreed with immunohistochemistry results. Our double-labeling analyses of intraneuronal Abeta and CD40 revealed that intraneuronal Abeta is associated with neuronal expression of CD40 in Tg2576 mice. Our quantitative sandwich ELISA analysis revealed decreased levels of soluble Abeta1-42 and increased levels of Abeta1-40 in Tg2576 mice injected with the anti-GM-CSF antibody, suggesting that anti-GM-CSF antibody alone decreases soluble Abeta1-42 production and suppresses microglial activity in Tg2576 mice. These findings indicating the ability of the anti-GM-CSF antibody to reduce Abeta1-42 and microglial activity in Tg2576 mice may have therapeutic implications for Alzheimers disease.


Cancer Research | 2014

Targeting EphA3 Inhibits Cancer Growth by Disrupting the Tumor Stromal Microenvironment

Mary E. Vail; Carmel Murone; Y L April Tan; Linda L P Hii; Degu B Abebe; Peter W. Janes; Fook-Thean Lee; Mark Baer; Varghese Palath; Christopher Bebbington; Geoffrey T. Yarranton; Carmen Llerena; Slavisa Garic; David Abramson; Glenn A Cartwright; Andrew M. Scott; Martin Lackmann

Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy.


The Journal of Allergy and Clinical Immunology | 2014

The eosinophil surface receptor epidermal growth factor–like module containing mucin-like hormone receptor 1 (EMR1): A novel therapeutic target for eosinophilic disorders

Fanny Legrand; Nenad Tomasevic; Olga Simakova; Chyi-Chia Richard Lee; Zengfang Wang; Mark Raffeld; Michelle Makiya; Varghese Palath; John Leung; Mark Baer; Geoffrey T. Yarranton; Irina Maric; Christopher Bebbington; Amy D. Klion

BACKGROUND Although several novel agents are currently in clinical trials for eosinophilic disorders, none has demonstrated efficacy in reducing blood and tissue eosinophilia in all subjects. Additional approaches are clearly needed. OBJECTIVE We sought to explore the potential of the human eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1) as a therapeutic target for eosinophilic disorders. METHODS EMR1 expression was assessed in blood and bone marrow specimens from eosinophilic and healthy subjects, cell lines, CD34(+) cells differentiated in vitro, and tissue biopsy specimens by using flow cytometry, quantitative PCR, and immunostaining. Eosinophil targeting by a novel, humanized, afucosylated anti-EMR1 IgG1 was evaluated in vitro by using a natural killer cell-mediated killing assay and in vivo in cynomolgus monkeys. RESULTS Analysis of blood and bone marrow cells from healthy and eosinophilic donors and in vitro-differentiated CD34(+) cells confirmed restriction of human EMR1 surface and mRNA expression to mature eosinophils. Tissue eosinophils also expressed EMR1. Although EMR1 was highly expressed on eosinophils from all subjects, surface expression was negatively correlated with absolute eosinophil counts (r = -0.46, P < .001), and soluble plasma levels correlated positively with absolute eosinophil counts (r = 0.69, P < .001), suggesting modulation of EMR1 in vivo. Nevertheless, afucosylated anti-EMR1 mAb dramatically enhanced natural killer cell-mediated killing of eosinophils from healthy and eosinophilic donors and induced a rapid and sustained depletion of eosinophils in monkeys. CONCLUSION EMR1 expression is restricted to mature blood and tissue eosinophils. Targeting of eosinophils with afucosylated anti-EMR1 antibody shows promise as a treatment for eosinophilic disorders.


European Journal of Clinical Microbiology & Infectious Diseases | 2012

PcrV antibody–antibiotic combination improves survival in Pseudomonas aeruginosa -infected mice

Yinglong Song; Mark Baer; Ruchika Srinivasan; Jun Lima; Geoffrey T. Yarranton; Christopher Bebbington; Susan V. Lynch

The type III secretion system (TTSS) of Pseudomonas aeruginosa, associated with acute infection, facilitates the direct injection of cytotoxins into the host cell cytoplasm. Mab166, a murine monoclonal antibody against PcrV, a protein located at the tip of the injectisome, has demonstrated efficacy against P. aeruginosa infection, resulting in reduced lung injury and increased survival in murine models of infection. We hypothesised that the administration of Mab166 in combination with an antibiotic would further improve the survival of P. aeruginosa-infected mice. A murine model of P. aeruginosa acute infection, three clinically relevant antibiotics (ciprofloxacin, tobramycin and ceftazidime) and the Mab166 antibody were used for this study. Consistently, compared to other treatment groups (antibiotic or antibody administered in isolation), the combination of Mab166 and antibiotic significantly improved the survival of mice infected with three times the lethal dose (LD90) of the highly cytotoxic ExoU-secreting strain, PA103. This synergistic effect was primarily due to enhanced bactericidal effect and protection against lung injury, which prevented bacterial dissemination to other organs. Hence, the combination of Mab166 with antibiotic administration provides a new, more effective strategy against P. aeruginosa airway infection, especially when large numbers of highly virulent strains are present.


Journal of Neurochemistry | 2009

Granulocyte-Macrophage Colony-Stimulating Factor Antibody] Suppresses Microglial Activity: Implications for Anti-inflammatory Effects in Alzheimer's Disease and Multiple Sclerosis

P. Hemachandra Reddy; Maria Manczak; Wei Zhao; Kazuhiro Nakamura; Christopher Bebbington; Geoffrey T. Yarranton; Peizhong Mao

The objective of our study was to determine granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) activity in the brain following GM‐CSF induction. We injected recombinant mouse GM‐CSF into the brains of 8‐month‐old C57BL6 mice via intracerebroventricular injections and studied the activities of microglia, astrocytes, and neurons. We also sought to determine whether an anti‐GM‐CSF antibody could suppress endogenous microglial activity in the C57BL6 mice and could also suppress microglial activity induced by the recombinant mouse GM‐CSF in another group of C57BL6 mice. Using quantitative real‐time RT‐PCR, we assessed microglial, astrocytic, and neuronal activity by measuring mRNA expression of pro‐inflammatory cytokines, GFAP, and the neuronal marker NeuN in the cerebral cortex tissues from C57BL6 mice. We performed immunoblotting and immunohistochemistry of activated microglia in different regions of the brains from control (phosphate‐buffered saline‐injected C57BL6 mice) and experimental mice (recombinant GM‐CSF‐injected C57BL6 mice, GM‐CSF antibody‐injected C57BL6 mice, and recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody‐injected C57BL6 mice). We found increased mRNA expression of CD40 (9.75‐fold), tumor necrosis factor‐alpha (2.1‐fold), CD45 (1.73‐fold), and CD11c (1.70‐fold) in the cerebral cortex of C57BL6 mice that were induced with recombinant GM‐CSF, compared with control mice. Further, the anti‐GM‐CSF antibody suppressed microglia in mice that were induced with recombinant GM‐CSF. Our immunoblotting and immunohistochemistry findings of GM‐CSF‐associated cytokines in C57BL6 mice induced with recombinant GM‐CSF, in C57BL6 mice injected with the anti‐GM‐CSF antibody, and in C57BL6 mice injected with recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody concurred with our real‐time RT‐PCR findings. These findings suggest that GM‐CSF is critical for microglial activation and that anti‐GM‐CSF antibody suppresses microglial activity in the CNS. The findings from this study may have implications for anti‐inflammatory effects of Alzheimer’s disease and experimental autoimmune encephalomyelitis mice (a multiple sclerosis mouse model).

Collaboration


Dive into the Christopher Bebbington's collaboration.

Top Co-Authors

Avatar

Mark Baer

University of California

View shared research outputs
Top Co-Authors

Avatar

Geoffrey T. Yarranton

National Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Boyd

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge