Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Broyd is active.

Publication


Featured researches published by Christopher Broyd.


Journal of the American College of Cardiology | 2012

Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study.

Sayan Sen; Javier Escaned; Iqbal S. Malik; Ghada Mikhail; Rodney A. Foale; Rafael Mila; Jason M. Tarkin; Ricardo Petraco; Christopher Broyd; Richard J. Jabbour; Amarjit Sethi; Christopher Baker; Micheal Bellamy; Mahmud Al-Bustami; David Hackett; Masood Khan; David Lefroy; Kim H. Parker; Alun D. Hughes; Darrel P. Francis; Carlo Di Mario; Jamil Mayet; Justin E. Davies

OBJECTIVES The purpose of this study was to develop an adenosine-independent, pressure-derived index of coronary stenosis severity. BACKGROUND Assessment of stenosis severity with fractional flow reserve (FFR) requires that coronary resistance is stable and minimized. This is usually achieved by administration of pharmacological agents such as adenosine. In this 2-part study, we determine whether there is a time when resistance is naturally minimized at rest and assess the diagnostic efficiency, compared with FFR, of a new pressure-derived adenosine-free index of stenosis severity over that time. METHODS A total of 157 stenoses were assessed. In part 1 (39 stenoses), intracoronary pressure and flow velocity were measured distal to the stenosis; in part 2 (118 stenoses), intracoronary pressure alone was measured. Measurements were made at baseline and under pharmacologic vasodilation with adenosine. RESULTS Wave-intensity analysis identified a wave-free period in which intracoronary resistance at rest is similar in variability and magnitude (coefficient of variation: 0.08 ± 0.06 and 284 ± 147 mm Hg s/m) to those during FFR (coefficient of variation: 0.08 ± 0.06 and 302 ± 315 mm Hg s/m; p = NS for both). The resting distal-to-proximal pressure ratio during this period, the instantaneous wave-free ratio (iFR), correlated closely with FFR (r = 0.9, p < 0.001) with excellent diagnostic efficiency (receiver-operating characteristic area under the curve of 93%, at FFR <0.8), specificity, sensitivity, negative and positive predictive values of 91%, 85%, 85%, and 91%, respectively. CONCLUSIONS Intracoronary resistance is naturally constant and minimized during the wave-free period. The instantaneous wave-free ratio calculated over this period produces a drug-free index of stenosis severity comparable to FFR. (Vasodilator Free Measure of Fractional Flow Reserve [ADVISE]; NCT01118481).


Journal of the American College of Cardiology | 2013

Diagnostic classification of the instantaneous wave-free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (Classification Accuracy of Pressure-Only Ratios Against Indices Using Flow Study).

Sayan Sen; Kaleab N. Asrress; Sukhjinder Nijjer; Ricardo Petraco; Iqbal S. Malik; Rodney A. Foale; Ghada Mikhail; Nicolas Foin; Christopher Broyd; Nearchos Hadjiloizou; Amarjit Sethi; Mahmud Al-Bustami; David Hackett; Masood Khan; Muhammed Z. Khawaja; Christopher Baker; Michael Bellamy; Kim H. Parker; Alun D. Hughes; Darrel P. Francis; Jamil Mayet; Carlo Di Mario; Javier Escaned; Simon Redwood; Justin E. Davies

OBJECTIVES This study sought to determine if adenosine administration is required for the pressure-only assessment of coronary stenoses. BACKGROUND The instantaneous wave-free ratio (iFR) is a vasodilator-free pressure-only measure of the hemodynamic severity of a coronary stenosis comparable to fractional flow reserve (FFR) in diagnostic categorization. In this study, we used hyperemic stenosis resistance (HSR), a combined pressure-and-flow index, as an arbiter to determine when iFR and FFR disagree which index is most representative of the hemodynamic significance of the stenosis. We then test whether administering adenosine significantly improves diagnostic performance of iFR. METHODS In 51 vessels, intracoronary pressure and flow velocity was measured distal to the stenosis at rest and during adenosine-mediated hyperemia. The iFR (at rest and during adenosine administration [iFRa]), FFR, HSR, baseline, and hyperemic microvascular resistance were calculated using automated algorithms. RESULTS When iFR and FFR disagreed (4 cases, or 7.7% of the study population), HSR agreed with iFR in 50% of cases and with FFR in 50% of cases. Differences in magnitude of microvascular resistance did not influence diagnostic categorization; iFR, iFRa, and FFR had equally good diagnostic agreement with HSR (receiver-operating characteristic area under the curve 0.93 iFR vs. 0.94 iFRa and 0.96 FFR, p = 0.48). CONCLUSIONS iFR and FFR had equivalent agreement with classification of coronary stenosis severity by HSR. Further reduction in resistance by the administration of adenosine did not improve diagnostic categorization, indicating that iFR can be used as an adenosine-free alternative to FFR.


Circulation-cardiovascular Interventions | 2014

Baseline Instantaneous Wave-Free Ratio as a Pressure-Only Estimation of Underlying Coronary Flow Reserve Results of the JUSTIFY-CFR Study (Joined Coronary Pressure and Flow Analysis to Determine Diagnostic Characteristics of Basal and Hyperemic Indices of Functional Lesion Severity–Coronary Flow Reserve)

Ricardo Petraco; Tim P. van de Hoef; Sukhjinder Nijjer; Sayan Sen; Rodney A. Foale; Martijn Meuwissen; Christopher Broyd; Mauro Echavarria-Pinto; Nicolas Foin; Iqbal S. Malik; Ghada Mikhail; Alun D. Hughes; Darrel P. Francis; Jamil Mayet; Carlo Di Mario; Javier Escaned; Jan J. Piek; Justin E. Davies

Background—Coronary flow reserve has extensive validation as a prognostic marker in coronary disease. Although pressure-only fractional flow reserve (FFR) improves outcomes compared with angiography when guiding percutaneous coronary intervention, it disagrees with coronary flow reserve classification 30% of the time. We evaluated whether baseline instantaneous wave-free ratio (iFR) could provide an improved pressure-only estimation of underlying coronary flow reserve. Methods and Results—Invasive pressure and flow velocity were measured in 216 stenoses from 186 patients with coronary disease. The diagnostic relationship between pressure-only indices (iFR and FFR) and coronary flow velocity reserve (CFVR) was compared using correlation coefficient and the area under the receiver operating characteristic curve. iFR showed a stronger correlation with underlying CFVR (iFR–CFVR, &rgr;=0.68 versus FFR–CFVR, &rgr;=0.50; P<0.001). iFR also agreed more closely with CFVR in stenosis classification (iFR area under the receiver operating characteristic curve, 0.82 versus FFR area under the receiver operating characteristic curve, 0.72; P<0.001, for a CFVR of 2). The closer relationship between iFR and CFVR was found for different CFVR cutoffs and was particularly marked in the 0.6 to 0.9 FFR range. Hyperemic FFR flow was similar to baseline iFR flow in functionally significant lesions (FFR ⩽0.75; mean FFR flow, 25.8±13.7 cm/s versus mean iFR flow, 21.5±11.7 cm/s; P=0.13). FFR flow was higher than iFR flow in nonsignificant stenoses (FFR >0.75; mean FFR flow, 42.3±22.8 cm/s versus mean iFR flow, 26.1±15.5 cm/s; P<0.001). Conclusions—When compared with FFR, iFR shows stronger correlation and better agreement with CFVR. These results provide physiological evidence that iFR could potentially be used as a functional index of disease severity, independently from its agreement with FFR.


Jacc-cardiovascular Interventions | 2014

Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease.

Sukhjinder Nijjer; Sayan Sen; Ricardo Petraco; Javier Escaned; Mauro Echavarria-Pinto; Christopher Broyd; Rasha Al-Lamee; Nicolas Foin; Rodney A. Foale; Iqbal S. Malik; Ghada Mikhail; Amarjit Sethi; Mahmud Al-Bustami; Raffi Kaprielian; Masood Khan; Christopher Baker; Michael Bellamy; Alun D. Hughes; Jamil Mayet; Darrel P. Francis; Carlo Di Mario; Justin E. Davies

OBJECTIVES The aim of this study was to perform hemodynamic mapping of the entire vessel using motorized pullback of a pressure guidewire with continuous instantaneous wave-free ratio (iFR) measurement. BACKGROUND Serial stenoses or diffuse vessel narrowing hamper pressure wire-guided management of coronary stenoses. Characterization of functional relevance of individual stenoses or narrowed segments constitutes an unmet need in ischemia-driven percutaneous revascularization. METHODS The study was performed in 32 coronary arteries with tandem and/or diffusely diseased vessels. An automated iFR physiological map, integrating pullback speed and physiological information, was built using dedicated software to calculate physiological stenosis severity, length, and intensity (ΔiFR/mm). This map was used to predict the best-case post-percutaneous coronary intervention (PCI) iFR (iFRexp) according to the stented location, and this was compared with the observed iFR post-PCI (iFRobs). RESULTS After successful PCI, the mean difference between iFRexp and iFRobs was small (mean difference: 0.016 ± 0.004) with a strong relationship between ΔiFRexp and ΔiFRobs (r = 0.97, p < 0.001). By identifying differing iFR intensities, it was possible to identify functional stenosis length and quantify the contribution of each individual stenosis or narrowed segment to overall vessel stenotic burden. Physiological lesion length was shorter than anatomic length (12.6 ± 1.5 vs. 23.3 ± 1.3, p < 0.001), and targeting regions with the highest iFR intensity predicted significant improvement post-PCI (r = 0.86, p < 0.001). CONCLUSIONS iFR measurements during continuous resting pressure wire pullback provide a physiological map of the entire coronary vessel. Before a PCI, the iFR pullback can predict the hemodynamic consequences of stenting specific stenoses and thereby may facilitate the intervention and stenting strategy.


Circulation-cardiovascular Interventions | 2015

Doppler-Derived Intracoronary Physiology Indices Predict the Occurrence of Microvascular Injury and Microvascular Perfusion Deficits After Angiographically Successful Primary Percutaneous Coronary Intervention

Paul F. Teunissen; Guus de Waard; Maurits R. Hollander; Lourens Robbers; Ibrahim Danad; P. Stefan Biesbroek; Raquel P. Amier; Mauro Echavarria-Pinto; Alicia Quirós; Christopher Broyd; Martijn W. Heymans; Robin Nijveldt; Adriaan A. Lammertsma; Pieter G. Raijmakers; Cornelis P. Allaart; Jorrit S. Lemkes; Yolande Appelman; Koen M. Marques; Jean G.F. Bronzwaer; Anton J.G. Horrevoets; Albert C. van Rossum; Javier Escaned; Aernout M. Beek; Paul Knaapen; Niels van Royen

Background—A total of 40% to 50% of patients with ST-segment–elevation myocardial infarction develop microvascular injury (MVI) despite angiographically successful primary percutaneous coronary intervention (PCI). We investigated whether hyperemic microvascular resistance (HMR) immediately after angiographically successful PCI predicts MVI at cardiovascular magnetic resonance and reduced myocardial blood flow at positron emission tomography (PET). Methods and Results—Sixty patients with ST-segment–elevation myocardial infarction were included in this prospective study. Immediately after successful PCI, intracoronary pressure–flow measurements were performed and analyzed off-line to calculate HMR and indices derived from the pressure–velocity loops, including pressure at zero flow. Cardiovascular magnetic resonance and H215O PET imaging were performed 4 to 6 days after PCI. Using cardiovascular magnetic resonance, MVI was defined as a subendocardial recess of myocardium with low signal intensity within a gadolinium-enhanced area. Myocardial perfusion was quantified using H215O PET. Reference HMR values were obtained in 16 stable patients undergoing coronary angiography. Complete data sets were available in 48 patients of which 24 developed MVI. Adequate pressure–velocity loops were obtained in 29 patients. HMR in the culprit artery in patients with MVI was significantly higher than in patients without MVI (MVI, 3.33±1.50 mm Hg/cm per second versus no MVI, 2.41±1.26 mm Hg/cm per second; P=0.03). MVI was associated with higher pressure at zero flow (45.68±13.16 versus 32.01±14.98 mm Hg; P=0.015). Multivariable analysis showed HMR to independently predict MVI (P=0.04). The optimal cutoff value for HMR was 2.5 mm Hg/cm per second. High HMR was associated with decreased myocardial blood flow on PET (myocardial perfusion reserve <2.0, 3.18±1.42 mm Hg/cm per second versus myocardial perfusion reserve ≥2.0, 2.24±1.19 mm Hg/cm per second; P=0.04). Conclusions—Doppler-flow–derived physiological indices of coronary resistance (HMR) and extravascular compression (pressure at zero flow) obtained immediately after successful primary PCI predict MVI and decreased PET myocardial blood flow. Clinical Trial Registration—URL: http://www.trialregister.nl. Unique identifier: NTR3164.


Heart | 2013

Improvement in coronary haemodynamics after percutaneous coronary intervention: assessment using instantaneous wave-free ratio

Sukhjinder Nijjer; Sayan Sen; Ricardo Petraco; Rajesh Sachdeva; Florim Cuculi; Javier Escaned; Christopher Broyd; Nicolas Foin; Nearchos Hadjiloizou; Rodney A. Foale; Iqbal S. Malik; Ghada Mikhail; Amarjit Sethi; Mahmud Al-Bustami; Raffi Kaprielian; Masood Khan; Christopher Baker; Michael Bellamy; Alun D. Hughes; Jamil Mayet; Rajesh K. Kharbanda; Carlo Di Mario; Justin E. Davies

Objective To determine whether the instantaneous wave-free ratio (iFR) can detect improvement in stenosis significance after percutaneous coronary intervention (PCI) and compare this with fractional flow reserve (FFR) and whole cycle Pd/Pa. Design A prospective observational study was undertaken in elective patients scheduled for PCI with FFR ≤0.80. Intracoronary pressures were measured at rest and during adenosine-mediated vasodilatation, before and after PCI. iFR, Pd/Pa and FFR values were calculated using the validated fully automated algorithms. Setting Coronary catheter laboratories in two UK centres and one in the USA. Patients 120 coronary stenoses in 112 patients were assessed. The mean age was 63±10 years, while 84% were male; 39% smokers; 33% with diabetes. Mean diameter stenosis was 68±16% by quantitative coronary angiography. Results Pre-PCI, mean FFR was 0.66±0.14, mean iFR was 0.75±0.21 and mean Pd/Pa 0.83±0.16. PCI increased all indices significantly (FFR 0.89±0.07, p<0.001; iFR 0.94±0.05, p<0.001; Pd/Pa 0.96±0.04, p<0.001). The change in iFR after intervention (0.20±0.21) was similar to ΔFFR 0.22±0.15 (p=0.25). ΔFFR and ΔiFR were significantly larger than resting ΔPd/Pa (0.13±0.16, both p<0.001). Similar incremental changes occurred in patients with a higher prevalence of risk factors for microcirculatory disease such as diabetes and hypertension. Conclusions iFR and FFR detect the changes in coronary haemodynamics elicited by PCI. FFR and iFR have a significantly larger dynamic range than resting Pd/Pa. iFR might be used to objectively document improvement in coronary haemodynamics following PCI in a similar manner to FFR.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

Christopher Broyd; Sukhjinder Nijjer; Sayan Sen; Ricardo Petraco; Siana Jones; Rasha Al-Lamee; Nicolas Foin; Mahmud Al-Bustami; Amarjit Sethi; Raffi Kaprielian; Punit Ramrakha; Masood Khan; Iqbal S. Malik; Darrel P. Francis; Kim H. Parker; Alun D. Hughes; Ghada Mikhail; Jamil Mayet; Justin E. Davies

Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: -64.4 ± 32.8 vs. -59.4 ± 34.2 × 10(2) W·m(-2)·s(-1), CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = -0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P < 0.01 vs. rest) and cumulative BDW -19.2 ± 12.6 × 10(3) W·m(-2)·s(-1) (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA.


Circulation-cardiovascular Interventions | 2015

Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology Results of the JUSTIFY-PCI Study

Sukhjinder Nijjer; Ricardo Petraco; Tim P. van de Hoef; Sayan Sen; Rodney A. Foale; Martijn Meuwissen; Christopher Broyd; Mauro Echavarria-Pinto; Rasha Al-Lamee; Nicolas Foin; Amarjit Sethi; Iqbal S. Malik; Ghada Mikhail; Alun D. Hughes; Jamil Mayet; Darrel P. Francis; Carlo Di Mario; Javier Escaned; Jan J. Piek; Justin E. Davies

Background—Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. Methods and Results—Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P<0.001). In significant stenoses, flow velocity over the resting wave-free period and hyperemic flow velocity did not differ statistically. After PCI, resting flow velocity over the wave-free period increased little (5.6±1.6 cm/s) and significantly less than hyperemic flow velocity (21.2±3 cm/s; P<0.01). The greatest increase in hyperemic flow velocity was observed when treating stenoses below physiological cut points; treating stenoses with fractional flow reserve ⩽0.80 gained &Dgr;28.5±3.8 cm/s, whereas those fractional flow reserve >0.80 had a significantly smaller gain (&Dgr;4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. Conclusions—Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI.


European Heart Journal | 2018

Identification of capillary rarefaction using intracoronary wave intensity analysis with resultant prognostic implications for cardiac allograft patients

Christopher Broyd; Francisco José Hernández-Pérez; Javier Segovia; Mauro Echavarria-Pinto; Alicia Quirós-Carretero; Clara Salas; Nieves Gonzalo; Pilar Jiménez-Quevedo; Luis Nombela-Franco; Pablo Salinas; Iván J. Núñez-Gil; María del Trigo; Javier Goicolea; Luis Alonso-Pulpón; Antonio Fernández-Ortiz; Kim H. Parker; Alun D. Hughes; Jamil Mayet; Justin E. Davies; Javier Escaned

Aims Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Methods and results Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Conclusions Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved.


International Journal of Cardiovascular Imaging | 2017

Non-invasive coronary wave intensity analysis

Christopher Broyd; Fausto Rigo; Justin E. Davies

Wave intensity analysis is calculated from simultaneously acquired measures of pressure and flow. Its mathematical computation produces a profile that provides quantitative information on the energy exchange driving blood flow acceleration and deceleration. Within the coronary circulation it has proven most useful in describing the wave that originates from the myocardium and that is responsible for driving the majority of coronary flow, labelled the backward decompression wave. Whilst this wave has demonstrated valuable insights into the pathogenic processes of a number of disease states, its measurement is hampered by its invasive necessity. However, recent work has used transthoracic echocardiography and an established measures of central aortic pressure to produce coronary flow velocity and pressure waveforms respectively. This has allowed a non-invasive measure of coronary wave intensity analysis, and in particular the backward decompression wave, to be calculated. It is anticipated that this will allow this tool to become more applicable and widespread, ultimately moving it from the research to the clinical domain.

Collaboration


Dive into the Christopher Broyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alun D. Hughes

University College London

View shared research outputs
Top Co-Authors

Avatar

Ricardo Petraco

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar

Ghada Mikhail

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar

Iqbal S. Malik

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamil Mayet

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge