Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Byrne is active.

Publication


Featured researches published by Christopher Byrne.


Cancer Research | 2012

Metastatic Progression with Resistance to Aromatase Inhibitors Is Driven by the Steroid Receptor Coactivator SRC-1

Jean McBryan; Sarah M. Theissen; Christopher Byrne; E Hughes; Sinead Cocchiglia; Stephen Sande; Jane O'Hara; Paul Tibbitts; Arnold Dk Hill; Leonie Young

Aromatase inhibitors (AI) are a standard-of-care treatment for postmenopausal, estrogen receptor-positive breast cancers. Although tumor recurrence on AI therapy occurs, the mechanisms underlying acquired resistance to AIs remain unknown. In this study, we examined a cohort of endocrine-treated breast cancer patients and used a cell line model of resistance to the AI letrozole. In patients treated with a first-line AI, hormone receptor switching between primary and resistant tumors was a common feature of disease recurrence. Resistant cells exhibited a switch from steroid-responsive growth to growth factor-responsive and endocrine-independent growth, which was accompanied by the development of a more migratory and disorganized phenotype. Both the resistant cells and tumors from AI-resistant patients showed high expression of the steroid receptor coactivator SRC-1. Direct interactions between SRC-1 and the transcription factor Ets2 regulated Myc and MMP9. SRC-1 was required for the aggressive and motile phenotype of AI-resistant cells. Interestingly, SRC-1 expression in primary and/or recurrent tumors was associated with a reduction in disease-free survival in treated patients. Moreover, there was a significant association between SRC-1 and Ets2 in the recurrent tissue compared with the matched primary tumor. Together, our findings elucidate a mechanism of AI-specific metastatic progression in which interactions between SRC-1 and Ets2 promote dedifferentiation and migration in hormone-dependent breast cancer.


Endocrinology | 2008

A Novel FK506-Like Binding Protein Interacts with the Glucocorticoid Receptor and Regulates Steroid Receptor Signaling

Hayley D. McKeen; Kerry McAlpine; Andrea Valentine; Derek J. Quinn; Keeva McClelland; Christopher Byrne; Martin O'Rourke; Sheila Young; Christopher J. Scott; H. McCarthy; David Hirst; Tracy Robson

FKBP-like (FKBPL) protein is a novel immunophilin-like protein that plays a role in the cellular stress response. Its three tetratricopeptide repeat motifs are homologous to the heat shock protein 90 interaction sites of other immunophilins that have roles in steroid hormone receptor signaling. In this study, using biomolecular complementation and coimmunoprecipitation techniques, we show that FKBPL also colocalizes and interacts with the components of the heat shock protein 90-glucocorticoid receptor (GR) complex and demonstrate that the PPIase domain of FKBPL is important for the interaction between this complex and the dynein motor protein, dynamitin. Treatment of DU145 cells with the GR ligand, dexamethasone, induced a rapid and coordinated translocation of both GR and FKBPL to the nucleus; this response was perturbed when FKBPL was knocked down with a targeted small interfering RNA. Furthermore, overexpression of FKBPL increased GR protein levels and transactivation of a luciferase reporter gene in response to dexamethasone in DU145 cells. However, these responses were cell line dependent. In summary, these data suggest that FKBPL can be classed as a new member of the FKBP protein family with a role in steroid receptor complexes and signaling.


Cancer Research | 2012

Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine resistant breast cancer

Damian McCartan; Jarlath C. Bolger; Ailis Fagan; Christopher Byrne; Yuan Hao; Li Qin; Marie McIlroy; Jianming Xu; Arnold Dk Hill; Peadar Ó Gaora; Leonie Young

The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity that permits the emergence of a hormone-independent tumor. The steroid coactivator protein SRC-1, through interactions with developmental proteins and other nonsteroidal transcription factors, drives this tumor adaptability. In this discovery study, we identified ADAM22, a non-protease member of the ADAM family of disintegrins, as a direct estrogen receptor (ER)-independent target of SRC-1. We confirmed SRC-1 as a regulator of ADAM22 by molecular, cellular, and in vivo studies. ADAM22 functioned in cellular migration and differentiation, and its levels were increased in endocrine resistant-tumors compared with endocrine-sensitive tumors in mouse xenograft models of human breast cancer. Clinically, ADAM22 was found to serve as an independent predictor of poor disease-free survival. Taken together, our findings suggest that SRC-1 switches steroid-responsive tumors to a steroid-resistant state in which the SRC-1 target gene ADAM22 has a critical role, suggesting this molecule as a prognostic and therapeutic drug target that could help improve the treatment of endocrine-resistant breast cancer.


Cancer Research | 2009

FKBPL Regulates Estrogen Receptor Signaling and Determines Response to Endocrine Therapy

Hayley D. McKeen; Christopher Byrne; Puthen V. Jithesh; Christopher Donley; Andrea Valentine; Anita Yakkundi; Martin O'Rourke; Charles Swanton; H. McCarthy; David Hirst; Tracy Robson

The HSP90 chaperone and immunophilin FKBPL is an estrogen-responsive gene that interacts with estogen receptor alpha (ERalpha) and regulates its levels. In this study, we explored the effects of FKBPL on breast cancer proliferation. Breast cancer cells stably overexpressing FKBPL became dependent on estrogen for their growth and were dramatically more sensitive to the antiestrogens tamoxifen and fulvestrant, whereas FKBPL knockdown reverses this phenotype. FKBPL knockdown also decreased the levels of the cell cycle inhibitor p21WAF1 and increased ERalpha phosphorylation on Ser(118) in response to 17beta-estradiol and tamoxifen. In support of the likelihood that these effects explained FKBPL-mediated cell growth inhibition and sensitivity to endocrine therapies, FKBPL expression was correlated with increased overall survival and distant metastasis-free survival in breast cancer patients. Our findings suggest that FKBPL may have prognostic value based on its impact on tumor proliferative capacity and sensitivity to endocrine therapies, which improve outcome.


Clinical Cancer Research | 2012

AIB1:ERα Transcriptional Activity Is Selectively Enhanced in Aromatase Inhibitor–Resistant Breast Cancer Cells

Jane O'Hara; Damir Vareslija; Jean McBryan; Fiona Bane; Paul Tibbitts; Christopher Byrne; Ronan Conroy; Yuan Hao; Peadar Ó Gaora; Arnold Dk Hill; Marie McIlroy; Leonie Young

Purpose: The use of aromatase inhibitors (AI) in the treatment of estrogen receptor (ER)-positive, postmenopausal breast cancer has proven efficacy. However, inappropriate activation of ER target genes has been implicated in the development of resistant tumors. The ER coactivator protein AIB1 has previously been associated with initiation of breast cancer and resistance to endocrine therapy. Experimental Design: Here, we investigated the role of AIB1 in the deregulation of ER target genes occurring as a consequence of AI resistance using tissue microarrays of patients with breast cancer and cell line models of resistance to the AI letrozole. Results: Expression of AIB1 associated with disease recurrence (P = 0.025) and reduced disease-free survival time (P = 0.0471) in patients treated with an AI as first-line therapy. In a cell line model of resistance to letrozole (LetR), we found ERα/AIB1 promoter recruitment and subsequent expression of the classic ER target genes pS2 and Myc to be constitutively upregulated in the presence of both androstenedione and letrozole. In contrast, the recruitment of the ERα/AIB1 transcriptional complex to the nonclassic ER target cyclin D1 and its subsequent expression remained sensitive to steroid treatment and could be inhibited by treatment with letrozole. Molecular studies revealed that this may be due in part to direct steroid regulation of c-jun-NH2-kinase (JNK), signaling to Jun and Fos at the cyclin D1 promoter. Conclusion: This study establishes a role for AIB1 in AI-resistant breast cancer and describes a new mechanism of ERα/AIB1 gene regulation which could contribute to the development of an aggressive tumor phenotype. Clin Cancer Res; 18(12); 3305–15. ©2012 AACR.


Biochemical Society Transactions | 2011

The emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL

Hayley D. McKeen; Donal J. Brennan; Shauna Hegarty; Fiona Lanigan; Karin Jirström; Christopher Byrne; Anita Yakkundi; Helen O. McCarthy; William M. Gallagher; Tracy Robson

FKBPs (FK506-binding proteins) have long been recognized as key regulators of the response to immunosuppressant drugs and as co-chaperones of steroid receptor complexes. More recently, evidence has emerged suggesting that this diverse protein family may also represent cancer biomarkers owing to their roles in cancer progression and response to treatment. FKBPL (FKBP-like) is a novel FKBP with roles in GR (glucocorticoid receptor), AR (androgen receptor) and ER (oestrogen receptor) signalling. FKBPL binds Hsp90 (heat-shock protein 90) and modulates translocation, transcriptional activation and phosphorylation of these steroid receptors. It has been proposed as a novel prognostic and predictive biomarker, where high levels predict for increased recurrence-free survival in breast cancer patients and enhanced sensitivity to endocrine therapy. Since this protein family has roles in a plethora of signalling pathways, its members represent novel prognostic markers and therapeutic targets for cancer diagnosis and treatment.


Cancer Research | 2014

Global Gene Repression by the Steroid Receptor Coactivator SRC-1 Promotes Oncogenesis

Ca Walsh; Jarlath C. Bolger; Christopher Byrne; Sinead Cocchiglia; Yuan Hao; Ailis Fagan; Li Qin; Aoife Cahalin; Damian McCartan; Marie McIlroy; Peadar O'Gaora; Jianming Xu; Arnold Dk Hill; Leonie Young

Transcriptional control is the major determinant of cell fate. The steroid receptor coactivator (SRC)-1 enhances the activity of the estrogen receptor in breast cancer cells, where it confers cell survival benefits. Here, we report that a global analysis of SRC-1 target genes suggested that SRC-1 also mediates transcriptional repression in breast cancer cells. Combined SRC-1 and HOXC11 ChIPseq analysis identified the differentiation marker, CD24, and the apoptotic protein, PAWR, as direct SRC-1/HOXC11 suppression targets. Reduced expression of both CD24 and PAWR was associated with disease progression in patients with breast cancer, and their expression was suppressed in metastatic tissues. Investigations in endocrine-resistant breast cancer cell lines and SRC-1(-/-)/PyMT mice confirmed a role for SRC-1 and HOXC11 in downregulation of CD24 and PAWR. Through bioinformatic analysis and liquid chromatography/mass spectrometry, we identified AP1 proteins and Jumonji domain containing 2C (JMD2C/KDM4C), respectively, as members of the SRC-1 interactome responsible for transcriptional repression. Our findings deepen the understanding of how SRC-1 controls transcription in breast cancers.


British Journal of Cancer | 2011

HOXC11-SRC-1 regulation of S100beta in cutaneous melanoma: new targets for the kinase inhibitor dasatinib.

C deBlacam; Christopher Byrne; E Hughes; Marie McIlroy; Fiona Bane; A. D. K. Hill; Leonie Young

Background:Cutaneous melanoma is an aggressive disease. S100beta is an established biomarker of disease progression; however, the mechanism of its regulation in melanoma is undefined.Methods:Expression of HOXC11 and SRC-1 was examined by immunohistochemistry and immunofluorescence. Molecular and cellular techniques were used to investigate regulation of S100beta, including, western blot, qPCR, ChIP and migration assays.Results:Expression levels of the transcription factor HOXC11 and its coactivator SRC-1 were significantly elevated in malignant melanoma in comparison with benign nevi (P<0.001 and P=0.017, respectively, n=80), and expression of HOXC11 and SRC-1 in the malignant tissue associated with each other (P<0.001). HOXC11 recruitment to the promoter of S100beta was observed in the primary melanoma cell line SKMel28. S100beta expression was found to be dependant on both HOXC11 and SRC-1. Treatment with the Src/Abl inhibitor, dasatinib, reduced HOXC11–SRC-1 interaction and prevented recruitment of HOXC11 to the S100beta promoter. Dasatinib inhibited both mRNA and protein levels of S100beta and reduced migration of the metastatic cell line MeWo.Conclusion:We have defined a signalling mechanism regulating S100beta in melanoma, which can be modulated by dasatinib. Profiling patients for expression of key markers of this network has the potential to increase the efficacy of dasatinib treatment.


Clinical Cancer Research | 2015

Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy

Jean McBryan; Ailis Fagan; Damian McCartan; Fiona Bane; Damir Vareslija; Sinead Cocchiglia; Christopher Byrne; Jarlath C. Bolger; Marie McIlroy; Lance Hudson; Paul Tibbitts; Peadar Ó Gaora; Arnold Dk Hill; Leonie Young

Purpose: Disease recurrence is a common problem in breast cancer and yet the mechanisms enabling tumor cells to evade therapy and colonize distant organs remain unclear. We sought to characterize global expression changes occurring with metastatic disease progression in the endocrine-resistant setting. Experimental Design: Here, for the first time, RNAsequencing has been performed on matched primary, nodal, and liver metastatic tumors from tamoxifen-treated patients following disease progression. Expression of genes commonly elevated in the metastases of sequenced patients was subsequently examined in an extended matched patient cohort with metastatic disease from multiple sites. The impact of tamoxifen treatment on endocrine-resistant tumors in vivo was investigated in a xenograft model. Results: The extent of patient heterogeneity at the gene level was striking. Less than 3% of the genes differentially expressed between sequential tumors were common to all patients. Larger divergence was observed between primary and liver tumors than between primary and nodal tumors, reflecting both the latency to disease progression and the genetic impact of intervening therapy. Furthermore, an endocrine-resistant in vivo mouse model demonstrated that tamoxifen treatment has the potential to drive disease progression and establish distant metastatic disease. Common functional pathways altered during metastatic, endocrine-resistant progression included extracellular matrix receptor interactions and focal adhesions. Conclusions: This novel global analysis highlights the influence of primary tumor biology in determining the transcriptomic profile of metastatic tumors, as well as the need for adaptations in cell–cell communications to facilitate successful tumor cell colonization of distant host organs. Clin Cancer Res; 21(23); 5371–9. ©2015 AACR.


Methods of Molecular Biology | 2017

Patient-Derived Xenografts of Breast Cancer

Damir Vareslija; Sinead Cocchiglia; Christopher Byrne; Leonie Young

With the advancement of translational research, particularly in the field of cancer, it is now imperative to have models which more clearly reflect patient heterogeneity. Patient derived xenograft (PDX) models, which involve the orthotopic implantation of breast tumors into immune-compromised mice, recapitulate the native tumor biology. Despite the considerable challenges that establishing PDX models present, they are the ultimate model to study tumorigenesis of refractory disease and for assessing the efficacy of new pharmaceutical compounds.

Collaboration


Dive into the Christopher Byrne's collaboration.

Top Co-Authors

Avatar

Leonie Young

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Marie McIlroy

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hayley D. McKeen

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Tracy Robson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Damian McCartan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Fiona Bane

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Jean McBryan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Sinead Cocchiglia

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Anita Yakkundi

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge