Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Glembotski is active.

Publication


Featured researches published by Christopher C. Glembotski.


Journal of Biological Chemistry | 2000

p38 MAPK and NF-κB Collaborate to Induce Interleukin-6 Gene Expression and Release EVIDENCE FOR A CYTOPROTECTIVE AUTOCRINE SIGNALING PATHWAY IN A CARDIAC MYOCYTE MODEL SYSTEM

Rian Craig; Andrea M Larkin; Amy M Mingo; Donna J. Thuerauf; Catherine A. Andrews; Patrick M. McDonough; Christopher C. Glembotski

In cardiac myocytes, the stimulation of p38 MAPK by the MAPKK, MKK6, activates the transcription factor, NF-κB, and protects cells from apoptosis. In the present study in primary neonatal rat cardiac myocytes, constitutively active MKK6, MKK6(Glu), bound to IκB kinase (IKK)-β and stimulated its abilities to phosphorylate IκB and to activate NF-κB. MKK6(Glu) induced NF-κB-dependent interleukin (IL)-6 transcription and IL-6 release in a p38-dependent manner. IL-6 protected myocardial cells against apoptosis. Like IL-6, TNF-α, which activates both NF-κB and p38, also induced p38-dependent IL-6 expression and release and protected myocytes from apoptotis. While TNF-α was relatively ineffective, IL-6 activated myocardial cell STAT3 by about 8-fold, indicating a probable role for this transcription factor in IL-6-mediated protection from apoptosis. TNF-α-mediated IL-6 induction was inhibited by a kinase-inactive form of the MAPKKK, TGF-β activated protein kinase (Tak1), which is known to activate p38 and NF-κB in other cell types. Thus, by stimulating both p38 and NF-κB, Tak1-activating cytokines, like TNF-α, can induce IL-6 expression and release. Moreover, the myocyte-derived IL-6 may then function in an autocrine and/or paracrine fashion to augment myocardial cell survival during stresses that activate p38.


Circulation Research | 2006

Activation of the Unfolded Protein Response in Infarcted Mouse Heart and Hypoxic Cultured Cardiac Myocytes

Donna J. Thuerauf; Marie Marcinko; Natalie Gude; Marta Rubio; Mark A. Sussman; Christopher C. Glembotski

Endoplasmic reticulum (ER) stresses that reduce ER protein folding activate the unfolded protein response (UPR). One effector of the UPR is the transcription factor X-box binding protein-1 (XBP1), which is expressed on ER stress–mediated splicing of the XBP1 mRNA. XBP1 induces certain ER-targeted proteins, eg, glucose-regulated protein 78 (GRP78), that help resolve the ER stress and foster cell survival. In this study, we determined whether hypoxia can activate the UPR in the cardiac context. Neonatal rat ventricular myocyte cultures subjected to hypoxia (16 hours) exhibited increased XBP1 mRNA splicing, XBP1 protein expression, GRP78 promoter activation, and GRP78 protein levels; however, the levels of these UPR markers declined during reoxygenation, suggesting that the UPR is activated during hypoxia but not during reoxygenation. When cells were infected with a recombinant adenovirus (AdV) encoding dominant-negative XBP1 (AdV-XBP1dn), UPR markers were reduced; however, hypoxia/reoxygenation-induced apoptosis increased. Confocal immunocytofluorescence demonstrated that hypoxia induced GRP78 in neonatal rat and isolated adult mouse ventricular myocytes. Moreover, mouse hearts subjected to in vivo myocardial infarction exhibited increased GRP78 expression in cardiac myocytes near the infarct, but not in healthy cells distal to the infarct. These results indicate that hypoxia activates the UPR in cardiac myocytes and that XBP1-inducible proteins may contribute to protecting the myocardium during hypoxic stress.


Circulation Research | 2006

Endoplasmic Reticulum Stress Gene Induction and Protection From Ischemia/Reperfusion Injury in the Hearts of Transgenic Mice With a Tamoxifen-Regulated Form of ATF6

Joshua J. Martindale; Rayne Fernandez; Donna J. Thuerauf; Ross Whittaker; Natalie Gude; Mark A. Sussman; Christopher C. Glembotski

Ischemia/reperfusion (I/R) affects the integrity of the endoplasmic reticulum (ER), the site of synthesis and folding of numerous proteins. Therefore, I/R may activate the unfolded protein response (UPR), resulting in the induction of a collection of ER stress proteins, many of which are protective and function to resolve the ER stress. In this study, we showed that when mouse hearts were subjected to ex vivo I/R, the levels of 2 ER stress-inducible markers of the UPR, the ER-targeted cytoprotective chaperones glucose-regulated proteins 78 and 94 (GRP78 and GRP94), were increased, consistent with I/R-mediated UPR activation in the heart. The UPR-mediated activation of ATF6 (Activation of Transcription Factor 6) induces cytoprotective ER stress proteins, including GRP78 and GRP94. To examine whether ATF6 protects the myocardium from I/R injury in the heart, we generated transgenic (TG) mice featuring cardiac-restricted expression of a novel tamoxifen-activated form of ATF6, ATF6-MER. When NTG and ATF6-MER TG mice were treated with or without tamoxifen for 5 days, only the hearts from the tamoxifen-treated TG mice exhibited increased levels of many ER stress–inducible mRNAs and proteins; for example, GRP78 and GRP94 transcript levels were increased by 8- and 15-fold, respectively. The tamoxifen-treated TG mouse hearts also exhibited better functional recovery from ex vivo I/R, as well as significantly reduced necrosis and apoptosis. These results suggest that the UPR is activated in the heart during I/R and that, as a result, the ATF6 branch of the UPR may induce expression of proteins that can function to reduce I/R injury.


Nature Medicine | 2007

Pim-1 regulates cardiomyocyte survival downstream of Akt

John Muraski; Marcello Rota; Yu Misao; Jenna Fransioli; Christopher T. Cottage; Natalie Gude; Grazia Esposito; Francesca Delucchi; Michael L. Arcarese; Roberto Alvarez; Sailay Siddiqi; Gregory Emmanuel; Weitao Wu; Kimberlee Fischer; Joshua J. Martindale; Christopher C. Glembotski; Annarosa Leri; Jan Kajstura; Nancy S. Magnuson; Anton Berns; Remus M Beretta; Steven R. Houser; Erik Schaefer; Piero Anversa; Mark A. Sussman

The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1–deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-XL protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1–overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1–deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.


American Journal of Physiology-heart and Circulatory Physiology | 2009

LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection

Hua Yuan; Cynthia N. Perry; Chengqun Huang; Eri Iwai-Kanai; Raquel S. Carreira; Christopher C. Glembotski; Roberta A. Gottlieb

Bacterial endotoxin lipopolysaccharide (LPS) is responsible for the multiorgan dysfunction that characterizes septic shock and is causal in the myocardial depression that is a common feature of endotoxemia in patients. In this setting the myocardial dysfunction appears to be due, in part, to the production of proinflammatory cytokines. A line of evidence also indicates that LPS stimulates autophagy in cardiomyocytes. However, the signal transduction pathway leading to autophagy and its role in the heart are incompletely characterized. In this work, we wished to determine the effect of LPS on autophagy and the physiological significance of the autophagic response. Autophagy was monitored morphologically and biochemically in HL-1 cardiomyocytes, neonatal rat cardiomyocytes, and transgenic mouse hearts after the administration of bacterial LPS or TNF-alpha. We observed that autophagy was increased after exposure to LPS or TNF-alpha, which is induced by LPS. The inhibition of TNF-alpha production by AG126 significantly reduced the accumulation of autophagosomes both in cell culture and in vivo. The inhibition of p38 MAPK or nitric oxide synthase by pharmacological inhibitors also reduced autophagy. Nitric oxide or H(2)O(2) induced autophagy in cardiomyocytes, whereas N-acetyl-cysteine, a potent antioxidant, suppressed autophagy. LPS resulted in increased reactive oxygen species (ROS) production and decreased total glutathione. To test the hypothesis that autophagy might serve as a damage control mechanism to limit further ROS production, we induced autophagy with rapamycin before LPS exposure. The activation of autophagy by rapamycin suppressed LPS-mediated ROS production and protected cells against LPS toxicity. These findings support the notion that autophagy is a cytoprotective response to LPS-induced cardiomyocyte injury; additional studies are needed to determine the therapeutic implications.


Circulation Research | 2007

Endoplasmic Reticulum Stress in the Heart

Christopher C. Glembotski

Over the last decade, it has become clear that the accumulation of misfolded proteins contributes to a number of neurodegenerative, immune, and endocrine pathologies, as well as other age-related illnesses. Recent interest has focused on the possibility that the accumulation of misfolded proteins can also contribute to vascular and cardiac diseases. In large part, the misfolding of proteins takes place during synthesis on free ribosomes in the cytoplasm or on endoplasmic reticulum ribosomes. In fact, even under optimal conditions, ≈30% of all newly synthesized proteins are rapidly degraded, most likely because of improper folding. Accordingly, stresses that perturb the folding of proteins during or soon after synthesis can lead to the accumulation of misfolded proteins and to potential cellular dysfunction and pathological consequences. To avert such outcomes, cells have developed elaborate protein quality-control systems for detecting misfolded proteins and making appropriate adjustments to the machinery responsible for protein synthesis and/or degradation. Important contributors to protein quality control include cytosolic and organelle-targeted molecular chaperones, which help fold and stabilize proteins from unfolding, and the ubiquitin proteasome system, which degrades terminally misfolded proteins. Both of these systems play important roles in cardiovascular biology. The focus of this review is the endoplasmic reticulum stress response, a protein quality-control and signal-transduction system that has not been well studied in the context of cardiovascular biology but that could be important for vascular and cardiac health and disease.


Circulation Research | 2003

Mimicking Phosphorylation of αB-Crystallin on Serine-59 Is Necessary and Sufficient to Provide Maximal Protection of Cardiac Myocytes From Apoptosis

Lisa E. Morrison; Holly Hoover; Donna J. Thuerauf; Christopher C. Glembotski

Abstract— &agr;B-Crystallin (&agr;BC), a small heat shock protein expressed in high levels in the heart, is phosphorylated on Ser-19, 45, and 59 after stress. However, it is not known whether &agr;BC phosphorylation directly affects cell survival. In the present study, constructs were prepared that encode forms of &agr;BC harboring Ser to Ala (blocks phosphorylation) or Ser to Glu (mimics phosphorylation) mutations at positions 19, 45, and 59. The effects of each form on apoptosis of cultured cardiac myocytes after hyperosmotic or hypoxic stress were assessed. Compared with controls, cells that expressed &agr;BC with Ser to Ala substitutions at all three positions, &agr;BC(AAA), exhibited more stress-induced apoptosis. Cells expressing either &agr;BC(AAE) or (EEE) exhibited 3-fold less apoptosis than cells expressing &agr;BC(AAA), indicating that phosphorylation of Ser-59 confers protection. &agr;BC is known to bind to procaspase-3 and to decrease caspase-3 activation. Compared with cells expressing &agr;BC(AAA), the activation of caspase-3 was decreased by 3-fold in cells expressing &agr;BC(AAE). These results demonstrate that mimicking the phosphorylation of &agr;BC on Ser-59 is necessary and sufficient to confer caspase-3 inhibition and protection of cardiac myocytes against hyperosmotic or hypoxic stress. These findings provide direct evidence that &agr;BC(S59P) contributes to the cardioprotection observed after physiologically relevant stresses, such as transient hypoxia. Identifying the targets of &agr;BC(S59P) will reveal important details about the mechanism underlying the cytoprotective effects of this small heat shock protein.


Journal of Clinical Investigation | 2005

Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt

Takahiro Kato; John Muraski; Yan Chen; Yasuyuki Tsujita; Jason A. Wall; Christopher C. Glembotski; Erik Schaefer; Mark A. Sussman

This study delineates a mechanism for antiapoptotic signaling initiated by atrial natriuretic peptide (ANP) stimulation leading to elevation of cGMP levels and subsequent nuclear accumulation of Akt kinase associated with zyxin, a cytoskeletal LIM-domain protein. Nuclear targeting of zyxin induces resistance to cell death coincident with nuclear accumulation of activated Akt. Nuclear translocation of zyxin triggered by cGMP also promotes nuclear Akt accumulation. Additional supportive evidence for nuclear accumulation of zyxin-enhancing cardiomyocyte survival includes the following: (a) promotion of zyxin nuclear localization by cardioprotective stimuli; (b) zyxin association with phospho-Akt473 induced by cardioprotective stimuli; and (c) recruitment of zyxin to the nucleus by activated nuclear-targeted Akt as well as recruitment of Akt by nuclear-targeted zyxin. Nuclear accumulation of zyxin requires both Akt activation and nuclear localization. Potentiation of cell survival is sensitive to stimulation intensity with high-level induction by ANP or cGMP signaling leading to apoptotic cell death rather than enhancing resistance to apoptotic stimuli. Myocardial nuclear accumulation of zyxin and Akt responds similarly in vivo following treatment of mice with ANP or cGMP. Thus, zyxin and activated Akt participate in a cGMP-dependent signaling cascade leading from ANP receptors to nuclear accumulation of both molecules. Nuclear accumulation of zyxin and activated Akt may represent a fundamental mechanism that facilitates nuclear-signal transduction and potentiates cell survival.


Journal of Biological Chemistry | 2000

αB-crystallin Gene Induction and Phosphorylation by MKK6-activated p38 A POTENTIAL ROLE FOR αB-CRYSTALLIN AS A TARGET OF THE p38 BRANCH OF THE CARDIAC STRESS RESPONSE

Holly Hoover; Donna J. Thuerauf; Joshua J. Martindale; Christopher C. Glembotski

The MAPK kinase MKK6 selectively stimulates p38 MAPK and confers protection against stress-induced apoptosis in cardiac myocytes. However, the events lying downstream of p38 that mediate this protection are unknown. The small heat shock protein, αB-crystallin, which is expressed in only a few cell types, including cardiac myocytes, may participate in MKK6-mediated cytoprotection. In the present study, we showed that, in cultured cardiac myocytes, expression of MKK6(Glu), an active form of MKK6, led to p38-dependent increases in αB-crystallin mRNA, protein, and transcription. MKK6(Glu) also induced p38-dependent activation of the downstream MAPK-activated protein kinase, MAPKAP-K2, and the phosphorylation of αB-crystallin on serine-59. Initially, exposure of cells to the hyperosmotic stressor, sorbitol, stimulated MKK6, p38, and MAPKAP-K2 and increased phosphorylation of αB-crystallin on serine 59. However, after longer times of exposure to sorbitol, the cells began to undergo apoptosis. This sorbitol-induced apoptosis was increased when p38 was inhibited in a manner that would block αB-crystallin induction and phosphorylation. Thus, under these conditions, the activation of MKK6, p38, and MAPKAP-K2 by sorbitol can provide a degree of protection against stress-induced apoptosis. Supporting this view was the finding that sorbitol-induced apoptosis was nearly completely blocked in cells expressing MKK6(Glu). Therefore, the cytoprotective effects of MKK6 in cardiac myocytes are due, in part, to phosphorylation of αB-crystallin on serine 59 and to the induction of αB-crystallin gene expression.


Journal of Biological Chemistry | 2005

Activation of p38 Has Opposing Effects on the Proliferation and Migration of Endothelial Cells

Meghan McMullen; Patrick W. Bryant; Christopher C. Glembotski; Peter A. Vincent; Kevin Pumiglia

Pathological conditions such as hypertension and hyperglycemia as well as abrasions following balloon angioplasty all lead to endothelial dysfunction that impacts disease morbidity. These conditions are associated with the elaboration of a variety of cytokines and increases in p38 activity in endothelial cells. However, the relationship between enhanced p38 activity and endothelial cell function remains poorly understood. To investigate the effect of enhanced p38 MAPK activity on endothelial cell function, we expressed an activated mutant of MEK6 (MEK6E), an upstream regulator of p38. Expression of MEK6E activated p38 and resulted in phosphorylation of its downstream substrate, heat shock protein 27 (Hsp27). Activation of p38 was not sufficient to induce apoptosis; however, it did induce p38-dependent cell cycle arrest. MEK6E expression was sufficient to inhibit ERK phosphorylation triggered by growth factors and integrin engagement. MAPK phosphatase-1 (MKP-1) expression was increased upon p38 activation, and expression of a “substrate-trapping” MKP-1 was sufficient to restore ERK activity. Activation of p38 was sufficient to induce cell migration, which was accompanied by alterations in actin architecture characterized by enhanced lamellipodia. Co-expression of a mutant form of Hsp27, lacking all three phosphorylation sites, reversed MEK6E-induced cell migration and altered the cytoskeletal changes induced by p38 activation. Collectively, these results suggest that cellular decisions regarding migration and proliferation are influenced by p38 activity and that prolonged activation of p38 may result in an anti-angiogenic phenotype that contributes to endothelial dysfunction.

Collaboration


Dive into the Christopher C. Glembotski's collaboration.

Top Co-Authors

Avatar

Donna J. Thuerauf

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Shirin Doroudgar

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Mark A. Sussman

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Natalie Gude

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirko Völkers

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Peter J. Belmont

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Erik A Blackwood

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Deanna S. Hanford

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge