Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Harris is active.

Publication


Featured researches published by Christopher C. Harris.


The New England Journal of Medicine | 2009

Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

Elaine R. Mardis; Li Ding; David J. Dooling; David E. Larson; Michael D. McLellan; Ken Chen; Daniel C. Koboldt; Robert S. Fulton; Kim D. Delehaunty; Sean McGrath; Lucinda A. Fulton; Devin P. Locke; Vincent Magrini; Rachel Abbott; Tammi L. Vickery; Jerry S. Reed; Jody S. Robinson; Todd Wylie; Scott M. Smith; Lynn K. Carmichael; James M. Eldred; Christopher C. Harris; Jason Walker; Joshua B. Peck; Feiyu Du; Adam F. Dukes; Gabriel E. Sanderson; Anthony M. Brummett; Eric Clark; Joshua F. McMichael

BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Nature | 2012

Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing

Li Ding; Timothy J. Ley; David E. Larson; Christopher A. Miller; Daniel C. Koboldt; John S. Welch; Julie Ritchey; Margaret A. Young; Tamara Lamprecht; Michael D. McLellan; Joshua F. McMichael; John W. Wallis; Charles Lu; Dong Shen; Christopher C. Harris; David J. Dooling; Robert S. Fulton; Lucinda Fulton; Ken Chen; Heather K. Schmidt; Joelle Kalicki-Veizer; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Michael C. Wendl; Sharon Heath; Mark A. Watson; Daniel C. Link; Michael H. Tomasson

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Nature | 2010

Genome remodelling in a basal-like breast cancer metastasis and xenograft.

Li Ding; Matthew J. Ellis; Shunqiang Li; David E. Larson; Ken Chen; John W. Wallis; Christopher C. Harris; Michael D. McLellan; Robert S. Fulton; Lucinda Fulton; Rachel Abbott; Jeremy Hoog; David J. Dooling; Daniel C. Koboldt; Heather K. Schmidt; Joelle Kalicki; Qunyuan Zhang; Lei Chen; Ling Lin; Michael C. Wendl; Joshua F. McMichael; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Elizabeth L. Appelbaum; Katherine DeSchryver; Sherri R. Davies; Therese Guintoli; Li Lin

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Nature | 2012

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Jinghui Zhang; Li Ding; Linda Holmfeldt; Gang Wu; Susan L. Heatley; Debbie Payne-Turner; John Easton; Xiang Chen; Jianmin Wang; Michael Rusch; Charles Lu; Shann Ching Chen; Lei Wei; J. Racquel Collins-Underwood; Jing Ma; Kathryn G. Roberts; Stanley Pounds; Anatoly Ulyanov; Jared Becksfort; Pankaj Gupta; Robert Huether; Richard W. Kriwacki; Matthew Parker; Daniel J. McGoldrick; David Zhao; Daniel Alford; Stephen Espy; Kiran Chand Bobba; Guangchun Song; Deqing Pei

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


Nature | 2012

Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition

Matthew J. Ellis; Li Ding; Dong Shen; Jingqin Luo; Vera J. Suman; John W. Wallis; Brian A. Van Tine; Jeremy Hoog; Reece J. Goiffon; Theodore C. Goldstein; Sam Ng; Li Lin; Robert Crowder; Jacqueline Snider; Karla V. Ballman; Jason D. Weber; Ken Chen; Daniel C. Koboldt; Cyriac Kandoth; William Schierding; Joshua F. McMichael; Christopher A. Miller; Charles Lu; Christopher C. Harris; Michael D. McLellan; Michael C. Wendl; Katherine DeSchryver; D. Craig Allred; Laura Esserman; Gary Unzeitig

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Science | 2012

Landscape of somatic retrotransposition in human cancers.

Eunjung Lee; Rebecca Iskow; Lixing Yang; Omer Gokcumen; Psalm Haseley; Lovelace J. Luquette; Jens Lohr; Christopher C. Harris; Li Ding; Richard Wilson; David A. Wheeler; Richard A. Gibbs; Raju Kucherlapati; Charles Lee; Peter V. Kharchenko; Peter J. Park

Movement in the Cancer Genome Transposable elements are genetic sequences that can replicate and move within the genome. The factors that make an element mobile are unknown but are generally considered rare in mammals. Lee et al. (p. 967, published online 28 June) analyzed five cancer types occurring among several individuals and found that three types of epithelial tumors exhibited high rates of element movement relative to brain and blood cancers. Furthermore, these somatically acquired, tumor-specific elements targeted genes in colorectal cancer that, when disrupted, impact gene expression and thus may be a factor in the progression of the cancers. Whole-genome sequencing provides evidence for somatic insertions in colorectal, prostate, and ovarian cancers. Transposable elements (TEs) are abundant in the human genome, and some are capable of generating new insertions through RNA intermediates. In cancer, the disruption of cellular mechanisms that normally suppress TE activity may facilitate mutagenic retrotranspositions. We performed single-nucleotide resolution analysis of TE insertions in 43 high-coverage whole-genome sequencing data sets from five cancer types. We identified 194 high-confidence somatic TE insertions, as well as thousands of polymorphic TE insertions in matched normal genomes. Somatic insertions were present in epithelial tumors but not in blood or brain cancers. Somatic L1 insertions tend to occur in genes that are commonly mutated in cancer, disrupt the expression of the target genes, and are biased toward regions of cancer-specific DNA hypomethylation, highlighting their potential impact in tumorigenesis.


Nature Genetics | 2012

RECURRENT MUTATIONS IN THE U2AF1 SPLICING FACTOR IN MYELODYSPLASTIC SYNDROMES

Timothy A. Graubert; Dong Shen; Li Ding; Theresa Okeyo-Owuor; Cara L Lunn; Jin Shao; Kilannin Krysiak; Christopher C. Harris; Daniel C. Koboldt; David E. Larson; Michael D. McLellan; David J. Dooling; Rachel Abbott; Robert S. Fulton; Heather K. Schmidt; Joelle Kalicki-Veizer; Michelle O'Laughlin; Marcus Grillot; Jack Baty; Sharon Heath; John L. Frater; Talat Nasim; Daniel C. Link; Michael H. Tomasson; Peter Westervelt; John F. DiPersio; Elaine R. Mardis; Timothy J. Ley; Richard Wilson; Matthew J. Walter

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3′ end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.


Bioinformatics | 2012

SomaticSniper: identification of somatic point mutations in whole genome sequencing data

David E. Larson; Christopher C. Harris; Ken Chen; Daniel C. Koboldt; Travis E. Abbott; David J. Dooling; Timothy J. Ley; Elaine R. Mardis; Richard Wilson; Li Ding

MOTIVATION The sequencing of tumors and their matched normals is frequently used to study the genetic composition of cancer. Despite this fact, there remains a dearth of available software tools designed to compare sequences in pairs of samples and identify sites that are likely to be unique to one sample. RESULTS In this article, we describe the mathematical basis of our SomaticSniper software for comparing tumor and normal pairs. We estimate its sensitivity and precision, and present several common sources of error resulting in miscalls. AVAILABILITY AND IMPLEMENTATION Binaries are freely available for download at http://gmt.genome.wustl.edu/somatic-sniper/current/, implemented in C and supported on Linux and Mac OS X. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Genome Biology | 2013

Retrotransposition of gene transcripts leads to structural variation in mammalian genomes.

Adam D. Ewing; Tracy Ballinger; Dent Earl; Christopher C. Harris; Li Ding; Richard Wilson; David Haussler

BackgroundRetroposed processed gene transcripts are an important source of material for new gene formation on evolutionary timescales. Most prior work on gene retrocopy discovery compared copies in reference genome assemblies to their source genes. Here, we explore gene retrocopy insertion polymorphisms (GRIPs) that are present in the germlines of individual humans, mice, and chimpanzees, and we identify novel gene retrocopy insertions in cancerous somatic tissues that are absent from patient-matched non-cancer genomes.ResultsThrough analysis of whole-genome sequence data, we found evidence for 48 GRIPs in the genomes of one or more humans sequenced as part of the 1,000 Genomes Project and The Cancer Genome Atlas, but which were not in the human reference assembly. Similarly, we found evidence for 755 GRIPs at distinct locations in one or more of 17 inbred mouse strains but which were not in the mouse reference assembly, and 19 GRIPs across a cohort of 10 chimpanzee genomes, which were not in the chimpanzee reference genome assembly. Many of these insertions are new members of existing gene families whose source genes are highly and widely expressed, and the majority have detectable hallmarks of processed gene retrocopy formation. We estimate the rate of novel gene retrocopy insertions in humans and chimps at roughly one new gene retrocopy insertion for every 6,000 individuals.ConclusionsWe find that gene retrocopy polymorphisms are a widespread phenomenon, present a multi-species analysis of these events, and provide a method for their ascertainment.


PLOS Computational Biology | 2015

Genome Modeling System: A Knowledge Management Platform for Genomics

Malachi Griffith; Obi L. Griffith; Scott M. Smith; Avinash Ramu; Matthew B. Callaway; Anthony M. Brummett; Michael J. Kiwala; Adam Coffman; Allison A. Regier; Benjamin J. Oberkfell; Gabriel E. Sanderson; Thomas P. Mooney; Nathaniel G. Nutter; Edward A. Belter; Feiyu Du; Robert T. L. Long; Travis E. Abbott; Ian T. Ferguson; David L. Morton; Mark M. Burnett; James V. Weible; Joshua B. Peck; Adam F. Dukes; Joshua F. McMichael; Justin T. Lolofie; Brian R. Derickson; Jasreet Hundal; Zachary L. Skidmore; Benjamin J. Ainscough; Nathan D. Dees

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

Collaboration


Dive into the Christopher C. Harris's collaboration.

Top Co-Authors

Avatar

Li Ding

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Koboldt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua F. McMichael

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ken Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael D. McLellan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David J. Dooling

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles Lu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cyriac Kandoth

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge