Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Lay is active.

Publication


Featured researches published by Christopher C. Lay.


Journal of Biomedical Optics | 2009

Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

David Abookasis; Christopher C. Lay; Marlon S. Mathews; Mark E. Linskey; Ron D. Frostig; Bruce J. Tromberg

We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (I(isch)=ctHHbctO(2)Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.


PLOS ONE | 2010

Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke.

Christopher C. Lay; Melissa F. Davis; Cynthia H. Chen-Bee; Ron D. Frostig

Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential.


The Journal of Neuroscience | 2011

Mild Sensory Stimulation Reestablishes Cortical Function during the Acute Phase of Ischemia

Christopher C. Lay; Melissa F. Davis; Cynthia H. Chen-Bee; Ron D. Frostig

When delivered within 1 and in most cases 2 h of permanent middle cerebral artery occlusion (pMCAO), mild sensory stimulation (intermittent single whisker stimulation) was shown to be completely neuroprotective 24 h after pMCAO in a rodent model of ischemic stroke, according to assessment with multiple techniques (Lay et al., 2010). The acute effect of stimulation treatment on the ischemic cortex, however, has yet to be reported. Here we characterize cortical function and perfusion during the 120 min whisker stimulation period in four experimental groups with treatment initiated 0, 1, 2 (protected groups), or 3 h (unprotected group) post-pMCAO using multiple techniques. According to functional imaging, a gradual return of evoked whisker functional representation to baseline levels was initiated with treatment onset and completed within the treatment period. Evoked neuronal activity and reperfusion to the ischemic area also showed a gradual recovery in protected animals. Surprisingly, a similar recovery profile was observed in response to treatment in all protected animals, regardless of treatment onset time. Nonstimulated pMCAO control group data demonstrate that reperfusion is not spontaneous. This makes the complete protection observed in the majority of animals stimulated at 2 h post-pMCAO even more surprising, as these animals recovered despite having been in a severely ischemic state for two full hours. In summary, when delivered within a 2 h window post-pMCAO, whisker stimulation treatment initiated reperfusion and a gradual recovery of cortical function that was completed or nearly completed within the treatment period.


The Neuroscientist | 2013

A Rat’s Whiskers Point the Way toward a Novel Stimulus-Dependent, Protective Stroke Therapy:

Ron D. Frostig; Christopher C. Lay; Melissa F. Davis

Stroke is the fourth leading cause of death in the United States and the leading cause of long-term disability. Ischemic stroke, due to an interruption in blood supply, is particularly prevalent; 87% of all strokes are ischemic. Unfortunately, current options for acute treatment are extremely limited and there is a great need for new treatment strategies. This review will discuss evidence that mild sensory stimulation can completely protect the jeopardized brain from an impending stroke in a rodent model. When delivered within the first 2 hours following ischemic onset, this stimulation results in complete protection, including a full reestablishment of cortical function, sensorimotor capabilities, and blood flow. Identical stimulation, however, initiated 3 hours following ischemic onset, results in an increase in damage compared with untreated animals. The protective effect is not specific to a single sensory modality, anesthesia, or age, and increasing evoked cortical activity by increasing stimulation accelerates recovery. Taken together, these findings demonstrate that cortical activity is a critical factor for protection and suggest a new, exciting potential avenue for the development of acute stroke treatment strategies that may produce a noninvasive, drug-free, equipment-free, and side effect–free means of protecting from ischemic stroke.


Stroke | 2011

Amount but Not Pattern of Protective Sensory Stimulation Alters Recovery After Permanent Middle Cerebral Artery Occlusion

Melissa F. Davis; Christopher C. Lay; Cynthia H. Chen-Bee; Ron D. Frostig

Background and Purpose— Using a rodent model of ischemia (permanent middle cerebral artery occlusion), our laboratory previously demonstrated that 4.27 minutes of patterned single-whisker stimulation delivered over 120 minutes can fully protect from impending damage when initiated within 2 hours of permanent middle cerebral artery occlusion (“early”). When initiated 3 hours postpermanent middle cerebral artery occlusion (“late”), stimulation resulted in irreversible damage. Here we investigate the effect of altering pattern, distribution, or amount of stimulation in this model. Methods— We assessed the cortex using functional imaging and histological analysis with altered stimulation treatment protocols. In 2 groups of animals we administered the same number of whisker deflections but in a random rather than patterned fashion distributed either over 120 minutes or condensed into 10 minutes postpermanent middle cerebral artery occlusion. We also tested increased (full-whisker array versus single-whisker) stimulation. Results— Early random whisker stimulation (condensed or dispersed) resulted in protection equivalent to early patterned stimulation. Early full-whisker array patterned stimulation also resulted in complete protection but promoted faster recovery. Late full-whisker array patterned stimulation, however, resulted in loss of evoked function and infarct volumes larger than those sustained by single-whisker counterparts. Conclusions— When induced early on after ischemic insult, stimulus-evoked cortical activity, irrespective of the parameters of peripheral stimulation that induced it, seems to be the important variable for neuroprotection.


Journal of the American Heart Association | 2012

Mild Sensory Stimulation Protects the Aged Rodent From Cortical Ischemic Stroke After Permanent Middle Cerebral Artery Occlusion

Christopher C. Lay; Melissa F. Davis; Cynthia H. Chen-Bee; Ron D. Frostig

Background Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals. Methods and Results Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into “treated” and “untreated” groups. Treated aged rats received intermittent single-whisker stimulation during a 120-minute period immediately after pMCAO, whereas untreated aged rats did not. These animals were assessed using a battery of behavioral tests 1 week before and 1 week after pMCAO, after which their brains were stained for infarct. An additional treated aged group and a treated young adult group also were imaged with functional imaging. Results demonstrated that the recovery of treated aged animals was indistinguishable from that of the treated young adult animals. Treated aged rats had fully intact sensorimotor behavior and no infarct, whereas untreated aged rats were impaired and sustained cortical infarct. Conclusions Taken together, our results confirm that single-whisker stimulation is protective in an aged rodent pMCAO model, despite age-associated stroke vulnerability. These findings further suggest potential for translation to the more clinically relevant older adult human population. (J Am Heart Assoc. 2012;1:e001255 doi: 10.1161/JAHA.112.001255.)


European Journal of Neuroscience | 2014

Complete protection from impending stroke following permanent middle cerebral artery occlusion in awake, behaving rats.

Christopher C. Lay; Ron D. Frostig

Using a rodent model of ischemic stroke [permanent middle cerebral artery occlusion (pMCAO)], our laboratory has previously demonstrated that sensory‐evoked cortical activation via mechanical single whisker stimulation treatment delivered under an anesthetized condition within 2 h of ischemic onset confers complete protection from impending infarct. There is a limited time window for this protection; rats that received the identical treatment at 3 h following ischemic onset lost neuronal function and sustained a substantial infarct. Rats in these studies, however, were anesthetized with sodium pentobarbital or isoflurane, whereas most human stroke patients are typically awake. To optimize our animal model, the present study examined, using functional imaging, histological, and behavioral analysis, whether self‐induced sensorimotor stimulation is also protective in unrestrained, behaving rats that actively explore an enriched environment. Rats were revived from anesthesia either immediately or at 3 h after pMCAO, at which point they were allowed to freely explore an enriched environment. Rats that explored immediately after ischemic onset maintained normal cortical function and did not sustain infarct, even when their whiskers were clipped. Rats that were revived at 3 h post‐pMCAO exhibited eliminated cortical function and sustained cortical infarct. Further, the data suggested that the level of individual active exploration could influence the outcome. Thus, early activation of the ischemic cortical area via unrestrained exploration resulted in protection from ischemic infarct, whereas late activation resulted in infarct, irrespective of the level of arousal or whisker‐specific stimulation.


Journal of Neuroscience Methods | 2010

Intrinsic signal optical imaging of brain function using short stimulus delivery intervals.

Cynthia H. Chen-Bee; Teodora Agoncillo; Christopher C. Lay; Ron D. Frostig

Intrinsic signal optical imaging (ISOI) can be used to map cortical function and organization. Because its detected signal lasts 10+s consisting of three phases, trials are typically collected using a long (tens of seconds) stimulus delivery interval (SDI) at the expense of efficiency, even when interested in mapping only the first signal phase (e.g., ISOI initial dip). It is unclear how the activity profile can change when stimuli are delivered at shorter intervals, and whether a short SDI can be implemented to improve efficiency. The goals of the present study are twofold: characterize the ISOI activity profile when multiple stimuli are delivered at 4s intervals, and determine whether successful mapping can be attained from trials collected using an SDI of 4s (offering >10x increase in efficiency). Our results indicate that four stimuli delivered 4s apart evoke an activity profile different from the triphasic signal, consisting of signal dips in a series at the same frequency as the stimuli despite a strong rise in signal prior to the 2nd to 4th stimuli. Visualization of such signal dips is dependent on using a baseline immediately prior to every stimulus. Use of the 4-s SDI is confirmed to successfully map activity with a similar location in peak activity and increased areal extent and peak magnitude compared to using a long SDI. Additional experiments were performed to begin addressing issues such as SDI temporal jittering, response magnitude as a function of SDI duration, and application for successful mapping of cortical function topography.


European Journal of Neuroscience | 2013

Early stimulation treatment provides complete sensory-induced protection from ischemic stroke under isoflurane anesthesia

Christopher C. Lay; Nathan S. Jacobs; Yi Zhou; Ron D. Frostig

Using a rodent model of ischemia [permanent middle cerebral artery occlusion (pMCAO)], previous studies demonstrated that whisker stimulation treatment completely protects the cortex from impending stroke when initiated within 2 h following pMCAO. When initiated 3 h post‐pMCAO, the identical treatment exacerbates stroke damage. Rats in these studies, however, were anesthetised with sodium pentobarbital, whereas human stroke patients are typically awake. To overcome this drawback, our laboratory has begun to use the anesthetic isoflurane, which allows rats to rapidly recover from pMCAO within minutes, to test stimulation treatment in awake rats and to determine whether isoflurane has an effect upon the pMCAO stroke model. We found no difference in infarct volume between pMCAO in untreated controls under either sodium pentobarbital or isoflurane, and the primary finding was that rats that received treatment immediately post‐pMCAO maintain cortical function and no stroke damage, whereas rats that received treatment 3 h post‐pMCAO exhibited eliminated cortical activity and extensive stroke damage. The only difference between anesthetics was the broad extent of evoked cortical activity observed during both functional imaging and electrophysiological recording, suggesting that the extent of evoked activity evident under isoflurane anesthesia is supported by underlying neuronal activity. Given the high degree of similarity with previous data, we conclude that the pMCAO stroke model is upheld with the use of isoflurane. This study demonstrated that the isoflurane‐anesthetised rat pMCAO model can be used for cerebrovascular studies, and allows for highly detailed investigation of potential novel treatments for ischemic stroke using awake, behaving animals.


Journal of neurological disorders | 2013

Sensory Stimulation-Based Complete Protection from Ischemic Stroke Remains Stable at 4 Months Post-Occlusion of MCA

Christopher C. Lay; Melissa F. Davis; Ron D. Frostig

Previous research from our lab has shown that when using a rodent model of ischemic stroke (permanent middle cerebral artery occlusion), mild sensory stimulation, when delivered within two hours of ischemic onset, completely protects the cortex from impending ischemic stroke damage when assessed 24 hours post-occlusion. However, the long-term stability of this protection remains unclear. Using intrinsic signal optical imaging for assessment of cortical function, laser speckle imaging for assessment of blood flow, a battery of behavioral tests and cresyl violet for histological assessment, the present study examined whether this protection was long-lasting. When assessed 4 months post-occlusion (this length of time being equivalent to 10–15 years in humans), rats receiving sensory stimulation treatment immediately after ischemic onset exhibit normal neuronal and vascular function, and they are behaviorally and histologically equivalent to healthy controls (surgical shams). Thus, the complete neuroprotection due to cortical activation via sensory stimulation remains stable with time. These findings add support to the translational potential of this sensory stimulation-based treatment.

Collaboration


Dive into the Christopher C. Lay's collaboration.

Top Co-Authors

Avatar

Ron D. Frostig

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Abookasis

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge