Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Rider is active.

Publication


Featured researches published by Christopher C. Rider.


Biochemical Journal | 2010

Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists.

Christopher C. Rider; Barbara Mulloy

The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFbeta (transforming growth factor-beta) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-beta superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.


Biochemical Society Transactions | 2006

Heparin/heparan sulphate binding in the TGF-β cytokine superfamily

Christopher C. Rider

The TGF-β (transforming growth factor-β) cytokine superfamily in mammals contains some 30 members. These dimeric proteins are characterized by a strongly conserved cystine knot-based structure. They regulate the proliferation, differentiation and migration of many cell types, and therefore have important roles in morphogenesis, organogenesis, tissue maintenance and wound healing. Thus far, around one-quarter of these cytokines have been shown to bind to heparin and heparan sulphate. Well-established examples are the TGF-β isoforms 1 and 2, and the BMPs (bone morphogenetic proteins) -2 and -4. In studies in my laboratory, we have shown that GDNF (glial-cell-line-derived neurotrophic factor) and its close relatives neurturin and artemin bind to heparin and heparan sulphate with high affinity. We have reported previously that binding of GDNF is highly dependent on the presence of 2-O-sulphate groups. More recently, we and others have been investigating the heparin/heparan sulphate-binding properties of BMP-7, which is a representative of a distinct BMP subgroup from that of BMPs -2 and -4. Interestingly, several of the various specific BMP antagonist proteins also bind to heparin and heparan sulphate. Much remains to be learnt about the nature and role of glycosaminoglycan interactions in the TGF-β superfamily, but current work suggests that these cytokines do not share a single highly conserved heparin/heparan sulphate-binding site.


Biochemical Society Transactions | 2006

Cytokines and proteoglycans: an introductory overview.

Barbara Mulloy; Christopher C. Rider

The defining characteristic of the glycoproteins known as proteoglycans is the presence of O-linked acidic polysaccharides known as GAGs (glycosaminoglycans). The backbone of these linear polysaccharides is a repeating disaccharide, comprising N-acetyl hexosamine alternating with beta-D-glucuronic acid, alpha-L-iduronic acid, or galactose. For some GAGs, partial deacetylation, epimerization of glucuronic acid, and substitution with N- and O-sulphates result in highly complex, heterogeneous structures. The interactions with proteins through which GAGs exert their biological effects depend on the resulting sequences. Some proteins, for example antithrombin, have highly specific sequence requirements for their GAG ligand [in this case heparin or HS (heparan sulphate)]; others, for example the fibroblast growth factors, are less demanding. GAGs, in particular HS, play a role as co-receptors for some cytokines. In addition, HS is thought to be important for the localization of cytokines, acting both as a tissue store and as a mediator of morphogen gradient formation in development. The structural determinants of GAG-cytokine interactions are therefore clearly important to understanding the biology of development, wound healing and the immune system. No single paradigm has been identified for such interactions, and the search for general principles underlying involvement of GAGs in cytokine function is at an early stage.


Journal of Immunology | 2000

Characterization of the Heparin-Binding Properties of IL-6

Rosemary S. Mummery; Christopher C. Rider

We establish, using an ELISA approach, that recombinant human and murine IL-6 bind to an immobilized heparin-BSA complex. In the case of human IL-6, this binding is displaceable by soluble heparin, IC50 ∼2 μg/ml, corresponding to ∼200 nM. This binding is specific because chondroitin sulfates B and C fail to compete, whereas chondroitin sulfate A and several heparan sulfates are weak inhibitors. Of a range of chemically modified heparins examined, the strongest competitor was the 2-O-desulfated product, but even this showed a considerably reduced IC50 (∼30 μg/ml). The epitopes of five IL-6-specific mAbs were still accessible in heparin-bound IL-6, and the dimer formed from the association of rIL-6 with its truncated soluble receptor polypeptide, srIL-6α, still bound to heparin. Further analysis showed that heparin competed partially and weakly with the binding of srIL-6 to IL-6; however, it competed strongly for the binding of the rIL-6/srIL-6Rα dimer, to soluble glycoprotein 130. In studies of the proliferation of IL-6-sensitive Ba/F3 cells expressing glycoprotein 130, we were unable to detect any effect of either the removal of cell surface heparan sulfate, or addition of soluble heparin. By contrast, heparin was able to protect IL-6 from digestion by the bacterial endoproteinase Lys-C. Overall, our findings show that IL-6 is a heparin-binding cytokine. This interaction will tend to retain IL-6 close to its sites of secretion in the tissues by binding to heparin-like glycosaminoglycans, thus favoring a paracrine mode of activity. Moreover, this binding may serve to protect the IL-6 from proteolytic degradation.


AIDS | 1994

Heparin specifically inhibits binding of V3 loop antibodies to HIV-1 gp120, an effect potentiated by CD4 binding

Hilary A. Harrop; Deirdre R. Coombe; Christopher C. Rider

ObjectiveTo investigate the binding of the sulphated polysaccharides, dextran sulphate and heparin, to CD4 and gp120 in order to examine the anti-HIV mechanisms of these compounds. DesignIn order to study the molecular mechanisms involved, the binding of sulphated polysaccharides to recombinant (r) sCD4 and gp120 was investigated in solid-phase binding studies that employed various monoclonal antibodies directed against known epitopes on these protiens, including the V3 loop of gp120. MethodsThe ability of sulphated polysaccharides to inhibit both the binding of gp120 to CD4 and the binding of the monoclonal antibodies was investigated by enzyme-linked immunosorbent assays. ResultsIt was demonstrated that dextran sulphate inhibits gp120-sCD4 binding at concentrations of 100 μg/ml, whereas heparin has no effect. Heparin does, however, block the binding to rgp120 of monoclonal antibodies recognizing epitopes in the V3 loop. Clinical low molecular weight heparin preparations are as active as unfractionated heparin in this regard. Pre-incubation of gp120 with excess sCD4 increases the potency of heparin in blocking the binding of V3 loop monoclonals severalfold. ConclusionsThe modes of action of heparin and dextran sulphate differ. Dextran sulphate both inhibits CD4-gp120 binding and binds to the V3 loop of gp120. However, heparin is more selective and appears to function only by interfering with events involving the V3 loop that occur prior to HIV fusion with the plasma membrane.


Glycoconjugate Journal | 1997

The potential for heparin and its derivatives in the therapy and prevention of HIV-1 infection

Christopher C. Rider

Heparin is one of several sulphated polysaccharides which potently inhibit replication of the human immunodeficiency virus type 1 (HIV-1) in cultures of CD4;ve human cells. The EC50 value is around 5 μg ml-1. We have demonstrated that heparin binds to recombinant gp120, the envelope glycoprotein of HIV-1, at a site termed the V3 loop, or principle neutralizing domain, which consists of a disulphide-bridged loop of 32–35 amino acids particularly enriched with basic residues. Using a series of chemically modified heparins we have shown that there is structural specificity in the anti-HIV activity of heparin. Heparin is routinely used clinically as an anticoagulant, and has proved essentially non-toxic and well tolerated. Low anticoagulant derivatives of heparin which retain high anti-HIV-1 activities in vitro may be generated by several routes. Such preparations are ideal candidates for clinical investigation as potential novel therapeutic agents for use in combination with other drugs in the management of AIDS and HIV infection.


Virus Research | 1999

Cell-surface heparan sulfate facilitates human immunodeficiency virus Type 1 entry into some cell lines but not primary lymphocytes

Jamal Ibrahim; Philip Griffin; Deirdre R. Coombe; Christopher C. Rider; William James

Many viruses have evolved to exploit cell-surface glycosaminoglycans (GAG), particularly heparan sulfate, to facilitate their attachment and infection of host cells. Here, the case for the involvement of heparan sulfate GAG in cellular infection by human immunodeficiency virus Type 1 (HIV-1) compared with herpes simplex virus Type 1 (HSV-1) is re-examined. It is shown that HIV-1 infection is facilitated by heparan sulfate GAG in only one of three highly permissive cell lines tested, whereas HSV-1 infection is facilitated to varying extents in all three. To evaluate the physiological relevance of these findings, primary peripheral blood lymphocytes (PBL), the physiological host for HIV-1, were examined. It was found that treatment of PBL with heparitinase, to remove any traces of heparan sulfate GAG, did not alter their sensitivity to infection by either lymphocyte-tropic, X4-type strain HIV-1IIIB, nor the monocyte-tropic, R5-type strain, HIV-1Ba-L. It is concluded that heparan sulfate GAG has little physiological role in the infection of lymphocytes by HIV-1 and that evidence derived from studies on immortalized cell lines suggesting a significant role must be interpreted with caution.


Biochemical Journal | 2007

The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding

Ivan Alfano; Parvez Vora; Rosemary S. Mummery; Barbara Mulloy; Christopher C. Rider

GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRalpha1 (GDNF family receptor alpha1), and heparin-bound GDNF is able to bind GFRalpha1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRalpha1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF-GFRalpha1 interaction, and the extracellular domain of GFRalpha1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF-GFRalpha1 engagement.


Journal of Cerebral Blood Flow and Metabolism | 1998

Hypoxia—Ischemia Induces a Rapid Elevation of Ubiquitin Conjugate Levels and Ubiquitin Immunoreactivity in the Immature Rat Brain

Susan J Vannucci; Rosemary S. Mummery; Richard Hawkes; Christopher C. Rider; Philip W. Beesley

Postnatal rats at 7 and 21 days of age were subjected to unilateral hypoxia—ischemia (H/I) by right carotid artery ligation followed by 1.5 to 2 hours of hypoxia (8% oxygen). Brains were frozen at specific intervals of recovery from 0 to 24 hours. Western blots of samples of right and left forebrain were immunodeveloped with a monoclonal antibody specific for ubiquitin, RHUb 1. An elevation of ubiquitin conjugate levels in the right compared with the left forebrain of 7-day-old animals was detectable immediately following H/I and increased by close to 60% of control level within 1 hour of recovery. The conjugate immunoreactivity remained at this level for 6 hours but had declined to control levels by 24 hours of recovery. No such increase was observed in response to hypoxia alone. Similar changes were observed in samples from the 21-day-old rat brain. However, the elevation of ubiquitin conjugate levels was of slower onset and persisted longer than observed for the 7-day-old animals. Immunocytochemical studies of brain fixed by immersion in formaldehyde/acetone/methanol showed that ubiquitin-like immunoreactivity was increased in the right, but not left, cerebral cortex and hippocampus of animals subjected to H/I. The data suggest that elevated ubiquitination may represent a neuroprotective response to H/I.


Neuroscience | 1997

Changes in ubiquitin immunoreactivity in developing rat brain: a putative role for ubiquitin and ubiquitin conjugates in dendrite outgrowth and differentiation.

S Flann; Richard Hawkes; B.M. Riederer; Christopher C. Rider; Philip W. Beesley

The role of ubiquitin in development of the mammalian brain has been studied using a monoclonal antibody, RHUb1, specific for ubiquitin. Immunodevelopment of western blots of homogenate samples of the cerebral cortex, hippocampus and cerebellum prepared from animals of known postnatal age show marked developmental changes in conjugate level. Striking decreases in the level of a prominent conjugate of molecular weight 22,000, which is identified as ubiquitinated histone, are observed during the first postnatal week in the cerebral cortex and hippocampus, but not the cerebellum. A marked overall developmental decrease in the level of high-molecular-weight (> 40,000) ubiquitin conjugates which occurs predominantly during the third, but also the fourth, postnatal week is observed in all three regions. Immunocytochemical data obtained with the RHUb1 antibody show intense staining of neuronal perikarya, nuclei and dendrites in early postnatal cerebral cortex and hippocampus. Staining of pyramidal cell perikarya and dendrites is particularly prominent. The intensity of dendritic staining, particularly for the cerebral cortex, shows a striking decrease after postnatal day 14 and only faint dendritic staining is observed in the adult. In early postnatal cerebellum, immunoreactivity is predominantly nuclear, though some staining of the proximal regions of Purkinje cell dendrites is observed between postnatal days 4 and 19. As with the cerebral cortex and hippocampus, most of the ubiquitin reactivity is lost in adult animals. The loss of dendritic staining, particularly in the cerebral cortex, correlates with the decrease in the level of high-molecular-weight ubiquitin conjugates observed on the western blots. Immunodevelopment of western blots of a range of subcellular fractions prepared from developing rat forebrain shows that the developmental decrease in the level of high-molecular-weight ubiquitin conjugates is not uniform for all fractions. The decrease in conjugate level is most marked for the cell-soluble, mitochondrial and detergent-insoluble cytoskeletal fractions. Taken overall, the data suggest a role for ubiquitin in dendrite outgrowth and arborization, loss of dendritic ubiquitin immunoreactivity correlating with completion of these processes.

Collaboration


Dive into the Christopher C. Rider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge