Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C.W. Hughes is active.

Publication


Featured researches published by Christopher C.W. Hughes.


Journal of Immunology | 2004

Of Mice and Not Men: Differences between Mouse and Human Immunology

Javier Mestas; Christopher C.W. Hughes

Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and λ5) and T cell (ZAP70 and common γ-chain) signaling pathway components, Thy-1, γδ T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.


Journal of Biological Chemistry | 2007

A Conserved Mechanism for Steroid Receptor Translocation to the Plasma Membrane

Ali Pedram; Mahnaz Razandi; Richard C.A. Sainson; Jin Kyung Kim; Christopher C.W. Hughes; Ellis R. Levin

Multiple steroid receptors (SR) have been proposed to localize to the plasma membrane. Some structural elements for membrane translocation of the estrogen receptor α (ERα) have been described, but the mechanisms relevant to other steroid receptors are entirely unknown. Here, we identify a highly conserved 9 amino acid motif in the ligand binding domains (E domains) of human/mouse ERα and ERβ, progesterone receptors A and B, and the androgen receptor. Mutation of the phenylalanine or tyrosine at position–2, cysteine at position 0, and hydrophobic isoleucine/leucine or leucine/leucine combinations at positions +5/6, relative to cysteine, significantly reduced membrane localization, MAP and PI 3-kinase activation, thymidine incorporation into DNA, and cell viability, stimulated by specific SR ligands. The localization sequence mediated palmitoylation of each SR, which facilitated caveolin-1 association, subsequent membrane localization, and steroid signaling. Palmitoylation within the E domain is therefore a crucial modification for membrane translocation and function of classical sex steroid receptors.


Circulation Research | 2008

Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-β in Vascular Morphogenesis

Matthew T. Holderfield; Christopher C.W. Hughes

Vascular morphogenesis encompasses a temporally regulated set of morphological changes that endothelial cells undergo to generate a network of interconnected tubules. Such a complex process inevitably involves multiple cell signaling pathways that must be tightly coordinated in time and space. The formation of a new capillary involves endothelial cell activation, migration, alignment, proliferation, tube formation, branching, anastomosis, and maturation of intercellular junctions and the surrounding basement membrane. Each of these stages is either known or suspected to fall under the influence of the vascular endothelial growth factor, notch, and transforming growth factor-beta/bone morphogenetic protein signaling pathways. Vascular endothelial growth factor is essential for initiation of angiogenic sprouting, and also regulates migration of capillary tip cells, proliferation of trunk cells, and gene expression in both. Notch has been implicated in the regulation of cell fate decisions in the vasculature, especially the choice between arterial and venular endothelial cells, and between tip and trunk cell phenotype. Transforming growth factor-beta regulates cell migration and proliferation, as well as matrix synthesis. In this review, we emphasize how crosstalk between these pathways is essential for proper patterning of the vasculature and offer a transcriptional oscillator model to explain how these pathways might interact to generate new tip cells during retinal angiogenesis.


Journal of Immunology | 2002

B7-H1 Is Expressed by Human Endothelial Cells and Suppresses T Cell Cytokine Synthesis

Melissa M. Mazanet; Christopher C.W. Hughes

Human endothelial cells (ECs) provide costimulatory signals sufficient to activate resting memory T cells to produce IL-2 and IFN-γ, at least in part through CD58-CD2 interactions. Recently, the B7-like molecule, B7-H1 (PD-L1), was described and shown to regulate T cell activation; however, there are conflicting reports on whether it stimulates or inhibits T cell cytokine synthesis. B7-H1 is not expressed constitutively by ECs; however, it is rapidly induced by IFN-γ, and synergistically by IFN-γ and TNF. In inflamed skin, B7-H1 is expressed by a subset of microvessels, and by keratinocytes, but is barely detectable in normal skin. Blocking the interaction of EC-expressed B7-H1 with its T cell ligand, programmed death-1 (PD-1), using a PD-1-Fc fusion protein, or by blocking B7-H1 expression with morpholino antisense oligonucleotides, augments expression of IL-2 and IFN-γ, implicating B7-H1 as a negative regulator of cytokine synthesis. However, signaling through PD-1 does not affect induction of the activation markers CD25 or CD69 on T cells, suggesting that its effects are specific to cytokine synthesis. The suppressive effects of B7-H1 on cytokine expression are proportional to the strength of the primary stimulus, allowing for B7-H1 to determine the level of T cell activation in response to ECs. Our results demonstrate that B7-H1 negatively regulates cytokine synthesis in T cells activated by ECs.


Tissue Engineering Part A | 2009

Prevascularization of a Fibrin-Based Tissue Construct Accelerates the Formation of Functional Anastomosis with Host Vasculature

Xiaofang Chen; Anna S. Aledia; Cyrus M. Ghajar; Craig K. Griffith; Andrew J. Putnam; Christopher C.W. Hughes; Steven C. George

One critical obstacle facing tissue engineering is the formation of functional vascular networks that can support tissue survival in vivo. We hypothesized that prevascularizing a tissue construct with networks of well-formed capillaries would accelerate functional anastomosis with the host upon implantation. Fibrin-based tissues were prevascularized with capillary networks by coculturing human umbilical vein endothelial cells (HUVECs) and fibroblasts in fibrin gels for 1 week. The prevascularized tissue and nonprevascularized controls were implanted subcutaneously onto the dorsal surface of immune-deficient mice and retrieved at days 3, 5, 7 and 14. HUVEC-lined vessels containing red blood cells were evident in the prevascularized tissue by day 5, significantly earlier than nonprevascularized tissues (14 days). Analysis of the HUVEC-lined vessels demonstrated that the number and area of perfused lumens in the prevascularized tissue were significantly larger compared to controls. In addition, collagen deposition and a larger number of proliferating cells were evident in the prevascularized tissue at day 14. Our results demonstrate that prevascularizing a fibrin-based tissue with well-formed capillaries accelerates anastomosis with the host vasculature, and promotes cellular activity consistent with tissue remodeling. Our prevascularization strategy may be useful to design large three-dimensional engineered tissues.


The FASEB Journal | 2005

Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis

Richard C.A. Sainson; Jason N. Aoto; Martin N. Nakatsu; Matthew T. Holderfield; Erin Conn; Erich Koller; Christopher C.W. Hughes

The requirement for notch signaling during vascular development is well‐documented but poorly understood. Embryonic and adult endothelial cells (EC) express notch and notch ligands; however, the necessity for cell‐autonomous notch signaling during angiogenesis has not been determined. During angiogenesis, EC display plasticity, whereby a subset of previously quiescent cells loses polarity and becomes migratory. To investigate the role of notch in EC, we have used a three‐dimensional in vitro system that models all of the early steps of angiogenesis. We find that newly forming sprouts are composed of specialized tip cells that guide the sprout and trunk cells that proliferate and rearrange to form intercellular lumens. Furthermore, we find that notch acts cell‐autonomously to suppress EC proliferation, thereby regulating tube diameter. In addition, when notch signaling is blocked, tip cells divide, and both daughter cells take on a tip cell phenotype, resulting in increased branching through vessel bifurcation. In contrast, notch signaling is not required for re‐establishment of EC polarity or for lumen formation. Thus, notch is used reiteratively and cell‐autonomously by EC to regulate vessel diameter, to limit branching at the tip of sprouts, and to establish a mature, quiescent phenotype.


Microvascular Research | 2009

The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions

Ling Lu; Faribourz Payvandi; Lei Wu; Ling-Hua Zhang; Robert J. Hariri; Hon-Wah Man; Roger Shen-Chu Chen; George W. Muller; Christopher C.W. Hughes; David I. Stirling; Peter H. Schafer; J. Blake Bartlett

Lenalidomide (Revlimid) is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk Myelodysplastic Syndromes (MDS) associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone for the treatment of multiple myeloma patients who have received at least one prior therapy. Previous reports suggest that lenalidomide is anti-angiogenic and this property appears to be related to efficacy in patients with MDS. We have investigated the effect of lenalidomide on the formation of microvessels in a novel in vitro angiogenesis assay utilizing human umbilical arterial rings and in a capillary-like cord formation assay using cultured primary endothelial cells. We found that lenalidomide consistently inhibits both sprout formation by arterial rings and cord formation by endothelial cells in a dose-dependent manner. We also found an inhibitory effect of lenalidomide on the associations between cadherin 5, beta-catenin and CD31, adherens junction proteins whose interaction is critical for endothelial cell cord formation. Furthermore, lenalidomide inhibited VEGF-induced PI3K-Akt pathway signaling, which is known to regulate adherens junction formation. We also found a strong inhibitory effect of lenalidomide on hypoxia-induced endothelial cell formation of cords and HIF-1 alpha expression, the main mediator of hypoxia-mediated effects and a key driver of angiogenesis and metastasis. Anti-metastatic activity of lenalidomide in vivo was confirmed in the B16-F10 mouse melanoma model by a >40% reduction in melanoma lung colony counts versus untreated mice. Our results suggest that inhibitory effects on microvessel formation, in particular adherens junction formation and inhibition of hypoxia-induced processes support a potential anti-angiogenic and anti-metastatic mechanism for this clinically active drug.


Molecular Biology of the Cell | 2011

The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation

Andrew C. Newman; Martin N. Nakatsu; Wayne Chou; Paul D. Gershon; Christopher C.W. Hughes

The combination of a candidate gene approach, column chromatography, and mass spectrometry identifies several fibroblast-derived proteins essential for endothelial cell sprouting and lumen formation. Furthermore, proteins responsible for EC lumen formation increase matrix stiffness, which correlates with EC lumenogenesis.


Methods in Enzymology | 2008

An optimized three-dimensional in vitro model for the analysis of angiogenesis.

Martin N. Nakatsu; Christopher C.W. Hughes

Angiogenesis is the formation of new blood vessels from the existing vasculature. It is a multistage process in which activated endothelial cells (EC) degrade basement membrane, sprout from the parent vessel, migrate, proliferate, align, undergo tube formation, and eventually branch and anastomose with adjacent vessels. Here we describe a three-dimensional in vitro assay that reproduces each of these steps. Human umbilical vein endothelial cells (HUVEC) are cultured on microcarrier beads, which are then embedded in a fibrin gel. Fibroblasts cultured on top of the gel provide factors that synergize with bFGF and VEGF to promote optimal sprouting and tube formation. Sprouts appear around day 2, lumen formation begins at day 4, and at day 10 an extensive anastomosing network of capillary-like tubes is established. The EC express a similar complement of genes as angiogenic EC in vivo and undergo identical morphologic changes during tube formation. This model, therefore, recapitulates in vivo angiogenesis in several critical aspects and provides a system that is easy to manipulate genetically, can be visualized in real time, and allows for easy purification of angiogenic EC for downstream analysis.


Cellular Immunology | 1990

Lymphocyte migration into brain modelled in vitro: Control by lymphocyte activation, cytokines, and antigen☆

David Male; Gareth Pryce; Christopher C.W. Hughes; Peter Lantos

Factors controlling lymphocyte adhesion to brain endothelium were investigated in vitro. Mitogen activation of lymphocytes causes increased adhesion to endothelium, which is maximal at 7-24 hr, declines to normal levels after the cells divide, and requires protein synthesis. Rat brain endothelium can be stimulated with IFN-gamma to increase its adhesion to either normal or activated lymphocytes. The endothelium is sensitive to low levels of cytokine: adhesion develops rapidly after stimulation and requires new protein synthesis. Antigen-specific line cells also adhere more effectively to endothelium than normal lymph node cells. This is enhanced by IFN-gamma treatment of the endothelium and is further increased marginally in the presence of the cognate antigen. The results suggest that either local stimulation of endothelium with cytokines or lymphocyte activation in the periphery will modulate lymphocyte traffic into brain.

Collaboration


Dive into the Christopher C.W. Hughes's collaboration.

Top Co-Authors

Avatar

Steven C. George

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bruce Freimark

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Gong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abraham P. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Agua Sobrino

University of California

View shared research outputs
Top Co-Authors

Avatar

Duc T. T. Phan

University of California

View shared research outputs
Top Co-Authors

Avatar

Van Nguyen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Monica L. Moya

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge