Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher C. Witt is active.

Publication


Featured researches published by Christopher C. Witt.


Science | 2008

A phylogenomic study of birds reveals their evolutionary history.

Shannon J. Hackett; Rebecca T. Kimball; Sushma Reddy; Rauri C. K. Bowie; Edward L. Braun; Michael J. Braun; Jena L. Chojnowski; W. Andrew Cox; Kin-Lan Han; John Harshman; Christopher J. Huddleston; Ben D. Marks; Kathleen J. Miglia; William S. Moore; Frederick H. Sheldon; David W. Steadman; Christopher C. Witt; Tamaki Yuri

Deep avian evolutionary relationships have been difficult to resolve as a result of a putative explosive radiation. Our study examined ∼32 kilobases of aligned nuclear DNA sequences from 19 independent loci for 169 species, representing all major extant groups, and recovered a robust phylogeny from a genome-wide signal supported by multiple analytical methods. We documented well-supported, previously unrecognized interordinal relationships (such as a sister relationship between passerines and parrots) and corroborated previously contentious groupings (such as flamingos and grebes). Our conclusions challenge current classifications and alter our understanding of trait evolution; for example, some diurnal birds evolved from nocturnal ancestors. Our results provide a valuable resource for phylogenetic and comparative studies in birds.


Systematic Biology | 2007

Phylogenetic Systematics and Biogeography of Hummingbirds: Bayesian and Maximum Likelihood Analyses of Partitioned Data and Selection of an Appropriate Partitioning Strategy

Jimmy A. McGuire; Christopher C. Witt; Douglas L. Altshuler; J. V. Remsen

Hummingbirds are an important model system in avian biology, but to date the group has been the subject of remarkably few phylogenetic investigations. Here we present partitioned Bayesian and maximum likelihood phylogenetic analyses for 151 of approximately 330 species of hummingbirds and 12 outgroup taxa based on two protein-coding mitochondrial genes (ND2 and ND4), flanking tRNAs, and two nuclear introns (AK1 and BFib). We analyzed these data under several partitioning strategies ranging between unpartitioned and a maximum of nine partitions. In order to select a statistically justified partitioning strategy following partitioned Bayesian analysis, we considered four alternative criteria including Bayes factors, modified versions of the Akaike information criterion for small sample sizes (AIC(c)), Bayesian information criterion (BIC), and a decision-theoretic methodology (DT). Following partitioned maximum likelihood analyses, we selected a best-fitting strategy using hierarchical likelihood ratio tests (hLRTS), the conventional AICc, BIC, and DT, concluding that the most stringent criterion, the performance-based DT, was the most appropriate methodology for selecting amongst partitioning strategies. In the context of our well-resolved and well-supported phylogenetic estimate, we consider the historical biogeography of hummingbirds using ancestral state reconstructions of (1) primary geographic region of occurrence (i.e., South America, Central America, North America, Greater Antilles, Lesser Antilles), (2) Andean or non-Andean geographic distribution, and (3) minimum elevational occurrence. These analyses indicate that the basal hummingbird assemblages originated in the lowlands of South America, that most of the principle clades of hummingbirds (all but Mountain Gems and possibly Bees) originated on this continent, and that there have been many (at least 30) independent invasions of other primary landmasses, especially Central America.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Phylogenomic evidence for multiple losses of flight in ratite birds

John Harshman; Edward L. Braun; Michael J. Braun; Christopher J. Huddleston; Rauri C. K. Bowie; Jena L. Chojnowski; Shannon J. Hackett; Kin-Lan Han; Rebecca T. Kimball; Ben D. Marks; Kathleen J. Miglia; William S. Moore; Sushma Reddy; Frederick H. Sheldon; David W. Steadman; Scott J. Steppan; Christopher C. Witt; Tamaki Yuri

Ratites (ostriches, emus, rheas, cassowaries, and kiwis) are large, flightless birds that have long fascinated biologists. Their current distribution on isolated southern land masses is believed to reflect the breakup of the paleocontinent of Gondwana. The prevailing view is that ratites are monophyletic, with the flighted tinamous as their sister group, suggesting a single loss of flight in the common ancestry of ratites. However, phylogenetic analyses of 20 unlinked nuclear genes reveal a genome-wide signal that unequivocally places tinamous within ratites, making ratites polyphyletic and suggesting multiple losses of flight. Phenomena that can mislead phylogenetic analyses, including long branch attraction, base compositional bias, discordance between gene trees and species trees, and sequence alignment errors, have been eliminated as explanations for this result. The most plausible hypothesis requires at least three losses of flight and explains the many morphological and behavioral similarities among ratites by parallel or convergent evolution. Finally, this phylogeny demands fundamental reconsideration of proposals that relate ratite evolution to continental drift.


Current Biology | 2014

Molecular Phylogenetics and the Diversification of Hummingbirds

Jimmy A. McGuire; Christopher C. Witt; J. V. Remsen; Ammon Corl; Daniel L. Rabosky; Douglas L. Altshuler; Robert Dudley

The tempo of species diversification in large clades can reveal fundamental evolutionary mechanisms that operate on large temporal and spatial scales. Hummingbirds have radiated into a diverse assemblage of specialized nectarivores comprising 338 species, but their evolutionary history has not, until now, been comprehensively explored. We studied hummingbird diversification by estimating a time-calibrated phylogeny for 284 hummingbird species, demonstrating that hummingbirds invaded South America by ∼22 million years ago, and subsequently diversified into nine principal clades (see [5-7]). Using ancestral state reconstruction and diversification analyses, we (1) estimate the age of the crown-group hummingbird assemblage, (2) investigate the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and (3) evaluate the role of Andean uplift in hummingbird speciation. Detailed analyses reveal disparate clade-specific processes that allowed for ongoing species diversification. One factor was significant variation among clades in diversification rates. For example, the nine principal clades of hummingbirds exhibit ∼15-fold variation in net diversification rates, with evidence for accelerated speciation of a clade that includes the Bee, Emerald, and Mountain Gem groups of hummingbirds. A second factor was colonization of key geographic regions, which opened up new ecological niches. For example, some clades diversified in the context of the uplift of the Andes Mountains, whereas others were affected by the formation of the Panamanian land bridge. Finally, although species accumulation is slowing in all groups of hummingbirds, several major clades maintain rapid rates of diversification on par with classical examples of rapid adaptive radiation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds

Joana Projecto-Garcia; Chandrasekhar Natarajan; Hideaki Moriyama; Roy E. Weber; Angela Fago; Zachary A. Cheviron; Robert Dudley; Jimmy A. McGuire; Christopher C. Witt; Jay F. Storz

Significance Hummingbirds have exceedingly high oxygen demands because of their elevated rates of aerobic metabolism, and yet they thrive in high-altitude environments in the Andes where oxygen is scarce. Here we report the finding that when hummingbird species colonized new elevational zones, evolutionary changes in the respiratory properties of hemoglobin were repeatedly mediated by the same amino acid replacements. Specifically, ancestral sequence reconstruction and protein engineering experiments revealed that parallel adaptation of hemoglobin function in multiple species is attributable to repeated amino acid replacements at a single pair of interacting sites. This striking parallelism at the molecular level suggests a surprising degree of reproducibility and predictability in adaptive protein evolution. Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable to repeated amino acid replacements at two epistatically interacting sites that alter the allosteric regulation of Hb-O2 affinity. These results demonstrate that repeated changes in biochemical phenotype involve parallelism at the molecular level, and that mutations with indirect, second-order effects on Hb allostery play key roles in biochemical adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Energetics, lifestyle, and reproduction in birds

Richard M. Sibly; Christopher C. Witt; Natalie A. Wright; Chris Venditti; Walter Jetz; James H. Brown

Theoretical and empirical studies of life history aim to account for resource allocation to the different components of fitness: survival, growth, and reproduction. The pioneering evolutionary ecologist David Lack [(1968) Ecological Adaptations for Breeding in Birds (Methuen and Co., London)] suggested that reproductive output in birds reflects adaptation to environmental factors such as availability of food and risk of predation, but subsequent studies have not always supported Lack’s interpretation. Here using a dataset for 980 bird species (Dataset S1), a phylogeny, and an explicit measure of reproductive productivity, we test predictions for how mass-specific productivity varies with body size, phylogeny, and lifestyle traits. We find that productivity varies negatively with body size and energetic demands of parental care and positively with extrinsic mortality. Specifically: (i) altricial species are 50% less productive than precocial species; (ii) species with female-only care of offspring are about 20% less productive than species with other methods of parental care; (iii) nonmigrants are 14% less productive than migrants; (iv) frugivores and nectarivores are about 20% less productive than those eating other foods; and (v) pelagic foragers are 40% less productive than those feeding in other habitats. A strong signal of phylogeny suggests that syndromes of similar life-history traits tend to be conservative within clades but also to have evolved independently in different clades. Our results generally support both Lack’s pioneering studies and subsequent research on avian life history.


Science | 2016

Predictable convergence in hemoglobin function has unpredictable molecular underpinnings

Chandrasekhar Natarajan; Federico G. Hoffmann; Roy E. Weber; Angela Fago; Christopher C. Witt; Jay F. Storz

Expect the unexpected In convergent evolution, similar environmental conditions produce similar sets of adaptations. Does similar convergence exist in the molecular underpinnings of such morphological changes? Natarajan et al. looked across more than 50 species of birds that have adapted to different elevations to identify patterns of similarity in hemoglobin-oxygen binding affinity (see the Perspective by Bridgham). Increases in hemoglobin-oxygen binding affinity occurred in alpine species, but the molecular changes underlying the hemoglobin changes were variable. Thus, even in cases where adaptive phenotypic change is predictable, the molecular pathways to these changes may not be. Science, this issue p. 336; see also p. 289 Improvements in hemoglobin-oxygen affinity are convergent across taxa, but the genetic pathways are different. To investigate the predictability of genetic adaptation, we examined the molecular basis of convergence in hemoglobin function in comparisons involving 56 avian taxa that have contrasting altitudinal range limits. Convergent increases in hemoglobin-oxygen affinity were pervasive among high-altitude taxa, but few such changes were attributable to parallel amino acid substitutions at key residues. Thus, predictable changes in biochemical phenotype do not have a predictable molecular basis. Experiments involving resurrected ancestral proteins revealed that historical substitutions have context-dependent effects, indicating that possible adaptive solutions are contingent on prior history. Mutations that produce an adaptive change in one species may represent precluded possibilities in other species because of differences in genetic background.


Journal of Ornithology | 2009

A higher-level taxonomy for hummingbirds

Jimmy A. McGuire; Christopher C. Witt; J. V. Remsen; Robert Dudley; Douglas L. Altshuler

In the context of a recently published phylogenetic estimate for 151 hummingbird species, we provide an expanded informal taxonomy, as well as a formal phylogenetic taxonomy for Trochilidae that follows the precepts of the PhyloCode, but remains consistent with the hierarchical nomenclature of the Linnaean system. We compare the recently published phylogenetic hypothesis with those of prior higher-level and more taxonomically circumscribed phylogenetic studies. We recommend the recognition of nine new clade names under the PhyloCode, eight of which are consistent with tribes and one with a subfamily under the Linnaean system.


Biology | 2013

Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals

Tamaki Yuri; Rebecca T. Kimball; John Harshman; Rauri C. K. Bowie; Michael J. Braun; Jena L. Chojnowski; Kin-Lan Han; Shannon J. Hackett; Christopher J. Huddleston; William S. Moore; Sushma Reddy; Frederick H. Sheldon; David W. Steadman; Christopher C. Witt; Edward L. Braun

Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions.


Molecular Phylogenetics and Evolution | 2002

The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex

Kevin P. Johnson; Jason D. Weckstein; Christopher C. Witt; Robert C. Faucett; Robert G. Moyle

The taxonomy of lice (Insecta: Phthiraptera) is often heavily influenced by host taxonomy. The use of host information to define genera of avian lice in the widespread Degeeriella complex has been prevalent but has created problems. Several workers have suggested that genera defined on the basis of host association are not monophyletic. We used sequences of nuclear (elongation factor-1alpha) and mitochondrial (cytochrome oxidase I) genes to test the monophyly of several genera in the Degeeriella complex. Parsimony and likelihood analyses of these data indicated that many genera in the Degeeriella complex are not monophyletic, such that species occurring on the same host groups do not form monophyletic groups. Biological features of hosts (including predaceous habits, brood parasitism, and hole nesting) for species in the Degeeriella complex likely provide opportunities for switching of lice between host groups. In addition, dispersal of lice via phoresy on hippoboscid flies also likely provides opportunities for host switching in the Degeeriella complex. This study indicates that the overuse of host taxonomy in louse taxonomy can result in classifications that do not reflect phylogenetic history.

Collaboration


Dive into the Christopher C. Witt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Harshman

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon J. Hackett

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Sushma Reddy

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Huddleston

National Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge