Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Calabrese is active.

Publication


Featured researches published by Christopher Calabrese.


Molecular Cancer Therapeutics | 2007

Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial

Huw D. Thomas; Christopher Calabrese; Michael A. Batey; Stacie S. Canan; Zdenek Hostomsky; Suzanne Kyle; Karen Maegley; David R. Newell; Donald James Skalitzky; Lan-Zhen Wang; Stephen E. Webber; Nicola J. Curtin

Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base excision repair of DNA breaks. Inhibition of PARP-1 enhances the efficacy of DNA alkylating agents, topoisomerase I poisons, and ionizing radiation. Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (Ki, 1.4–15.1 nmol/L) based on the quinazolinone, benzimidazole, tricyclic benzimidazole, tricyclic indole, and tricyclic indole-1-one core structures. We evaluated chemosensitization of temozolomide and topotecan using LoVo and SW620 human colorectal cells; in vitro radiosensitization was measured using LoVo cells, and the enhancement of antitumor activity of temozolomide was evaluated in mice bearing SW620 xenografts. Excellent chemopotentiation and radiopotentiation were observed in vitro, with 17 of the compounds causing a greater temozolomide and topotecan sensitization than the benchmark inhibitor AG14361 and 10 compounds were more potent radiosensitizers than AG14361. In tumor-bearing mice, none of the compounds were toxic when given alone, and the antitumor activity of the PARP inhibitor-temozolomide combinations was unrelated to toxicity. Compounds that were more potent chemosensitizers in vivo than AG14361 were also more potent in vitro, validating in vitro assays as a prescreen. These studies have identified a compound, AG14447, as a PARP inhibitor with outstanding in vivo chemosensitization potency at tolerable doses, which is at least 10 times more potent than the initial lead, AG14361. The phosphate salt of AG14447 (AG014699), which has improved aqueous solubility, has been selected for clinical trial. [Mol Cancer Ther 2007;6(3):945–56]


Nature | 2014

Dietary modulation of the microbiome affects autoinflammatory disease

John R. Lukens; Prajwal Gurung; Peter Vogel; Gordon R. Johnson; Robert Carter; Daniel J. McGoldrick; Srinivasa R.A.O. Bandi; Christopher Calabrese; Lieselotte Vande Walle; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

The incidences of chronic inflammatory disorders have increased considerably over the past three decades. Recent shifts in dietary consumption may have contributed importantly to this surge, but how dietary consumption modulates inflammatory disease is poorly defined. Pstpip2cmo mice, which express a homozygous Leu98Pro missense mutation in the Pombe Cdc15 homology family protein PSTPIP2 (proline-serine-threonine phosphatase interacting protein 2), spontaneously develop osteomyelitis that resembles chronic recurrent multifocal osteomyelitis in humans. Recent reports demonstrated a crucial role for interleukin-1β (IL-1β) in osteomyelitis, but deletion of the inflammasome components caspase-1 and NLRP3 failed to rescue Pstpip2cmo mice from inflammatory bone disease. Thus, the upstream mechanisms controlling IL-1β production in Pstpip2cmo mice remain to be identified. In addition, the environmental factors driving IL-1β-dependent inflammatory bone erosion are unknown. Here we show that the intestinal microbiota of diseased Pstpip2cmo mice was characterized by an outgrowth of Prevotella. Notably, Pstpip2cmo mice that were fed a diet rich in fat and cholesterol maintained a normal body weight, but were markedly protected against inflammatory bone disease and bone erosion. Diet-induced protection against osteomyelitis was accompanied by marked reductions in intestinal Prevotella levels and significantly reduced pro-IL-1β expression in distant neutrophils. Furthermore, pro-IL-1β expression was also decreased in Pstpip2cmo mice treated with antibiotics, and in wild-type mice that were kept under germ-free conditions. We further demonstrate that combined deletion of caspases 1 and 8 was required for protection against IL-1β-dependent inflammatory bone disease, whereas the deletion of either caspase alone or of elastase or neutrophil proteinase 3 failed to prevent inflammatory disease. Collectively, this work reveals diet-associated changes in the intestinal microbiome as a crucial factor regulating inflammasome- and caspase-8-mediated maturation of IL-1β and osteomyelitis in Pstpip2cmo mice.


International Journal of Radiation Oncology Biology Physics | 2010

Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

Mackenzie McGee; J. Blair Hamner; Regan F. Williams; Shannon F. Rosati; Thomas L. Sims; Catherine Y.C. Ng; M. Waleed Gaber; Christopher Calabrese; Jianrong Wu; Amit C. Nathwani; Christopher Duntsch; Thomas E. Merchant; Andrew M. Davidoff

PURPOSE Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. METHODS AND MATERIALS Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. RESULTS Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. CONCLUSION Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.


Genes & Development | 2013

Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction

Xi Wang; Madhavi Bathina; John R. Lynch; Brian Koss; Christopher Calabrese; Sharon Frase; John D. Schuetz; Jerold E. Rehg; Joseph T. Opferman

MCL-1 is an essential BCL-2 family member that promotes the survival of multiple cellular lineages, but its role in cardiac muscle has remained unclear. Here, we report that cardiac-specific ablation of Mcl-1 results in a rapidly fatal, dilated cardiomyopathy manifested by a loss of cardiac contractility, abnormal mitochondria ultrastructure, and defective mitochondrial respiration. Strikingly, genetic ablation of both proapoptotic effectors (Bax and Bak) could largely rescue the lethality and impaired cardiac function induced by Mcl-1 deletion. However, while the overt consequences of Mcl-1 loss were obviated by combining with the loss of Bax and Bak, mitochondria from the Mcl-1-, Bax-, and Bak-deficient hearts still revealed mitochondrial ultrastructural abnormalities and displayed deficient mitochondrial respiration. Together, these data indicate that merely blocking cell death is insufficient to completely overcome the need for MCL-1 function in cardiomyocytes and suggest that in cardiac muscle, MCL-1 also facilitates normal mitochondrial function. These findings are important, as specific MCL-1-inhibiting therapeutics are being proposed to treat cancer cells and may result in unexpected cardiac toxicity.


Journal of Biological Chemistry | 2010

Inflammasome-independent Role of Apoptosis-associated Speck-like Protein Containing a CARD (ASC) in T Cell Priming Is Critical for Collagen-induced Arthritis

Sirish K. Ippagunta; David D. Brand; Jiwen Luo; Kelli L. Boyd; Christopher Calabrese; Rinke Stienstra; Frank L. van de Veerdonk; Mihai G. Netea; Leo A. B. Joosten; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

Rheumatoid arthritis is an autoimmune disease with 1% prevalence in the industrialized world. The contributions of the inflammasome components Nlrp3, ASC, and caspase-1 in the pathogenesis of collagen-induced arthritis have not been characterized. Here, we show that ASC−/− mice were protected from arthritis, whereas Nlrp3−/− and caspase-1−/− mice were susceptible to collagen-induced arthritis. Unlike Nlrp3−/− and caspase-1−/− mice, the production of collagen-specific antibodies was abolished in ASC−/− mice. This was due to a significantly reduced antigen-specific activation of lymphocytes by ASC−/− dendritic cells. Antigen-induced proliferation of purified ASC−/− T cells was restored upon incubation with wild type dendritic cells, but not when cultured with ASC−/− dendritic cells. Moreover, direct T cell receptor ligation with CD3 and CD28 antibodies induced a potent proliferation of ASC−/− T cells, indicating that ASC is specifically required in dendritic cells for antigen-induced T cell activation. Therefore, ASC fulfills a hitherto unrecognized inflammasome-independent role in dendritic cells that is crucial for T cell priming and the induction of antigen-specific cellular and humoral immunity and the onset of collagen-induced arthritis.


Cancer Research | 2010

Tyrosine Kinase Inhibitor Gefitinib Enhances Topotecan Penetration of Gliomas

Angel M. Carcaboso; Mohamed A. Elmeliegy; Jun Shen; Stephen Juel; Ziwei M. Zhang; Christopher Calabrese; Lorraine Tracey; Christopher M. Waters; Clinton F. Stewart

Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, increases brain parenchymal extracellular fluid (ECF) accumulation of topotecan, a substrate of the ATP-binding cassette (ABC) transporters P-glycoprotein (Pgp/MDR-1) and breast cancer resistance protein (BCRP/ABCG2). The effect of modulating these transporters on topotecan penetration in gliomas has not been thoroughly studied. Thus, we performed intracerebral microdialysis on mice bearing orthotopic human gliomas (U87 and MT330) and assessed topotecan tumor ECF (tECF) penetration and the effect of gefitinib on topotecan tECF penetration and intratumor topotecan distribution. We found that topotecan penetration (P(tumor)) of U87 was 0.96 +/- 0.25 (n = 7) compared with that of contralateral brain (P(contralateral), 0.42 +/- 0.11, n = 5; P = 0.001). In MT330 tumors, P(tumor) (0.78 +/- 0.26, n = 6) and P(contralateral) (0.42 +/- 0.11, n = 5) also differed significantly (P = 0.013). Because both tumor models had disrupted blood-brain barriers and similar P(tumor) values, we used U87 and a steady-state drug administration approach to characterize the effect of gefitinib on topotecan P(tumor). At equivalent plasma topotecan exposures, we found that P(tumor) after gefitinib administration was lower. In a separate cohort of animals, we determined the volume of distribution of unbound topotecan in tumor (V(u,tumor)) and found that it was significantly higher in groups receiving gefitinib, implying that gefitinib administration leads to a greater proportion of intracellular topotecan. Our results provide crucial insights into the role that transporters play in central nervous system drug penetration and provide a better understanding of the effect of coadministration of transporter modulators on anticancer drug distribution within a tumor.


PLOS ONE | 2011

Preclinical models for neuroblastoma: establishing a baseline for treatment.

Tal Teitz; Jennifer Stanke; Sara M. Federico; Cori Bradley; Rachel Brennan; Jiakun Zhang; Melissa Johnson; Jan Sedlacik; Madoka Inoue; Ziwei M. Zhang; Sharon Frase; Jerold E. Rehg; Claudia M. Hillenbrand; David Finkelstein; Christopher Calabrese; Michael A. Dyer; Jill M. Lahti

Background Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system. Principal Findings Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a “standard of care” chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents. Significance The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer.


Journal of the National Cancer Institute | 2011

Activity of the Multikinase Inhibitor Sorafenib in Combination With Cytarabine in Acute Myeloid Leukemia

Shuiying Hu; Hongmei Niu; Hiroto Inaba; Shelley Orwick; Charles Rose; John C. Panetta; Shengping Yang; Stanley Pounds; Yiping Fan; Christopher Calabrese; Jerold E. Rehg; Dario Campana; Jeffrey E. Rubnitz; Sharyn D. Baker

BACKGROUND Acute myeloid leukemia (AML) is a genetically heterogeneous cancer that frequently exhibits aberrant kinase signaling. We investigated a treatment strategy combining sorafenib, a multikinase inhibitor with limited single-agent activity in AML, and cytarabine, a key component of AML chemotherapy. METHODS Using 10 human AML cell lines, we determined the effects of sorafenib (10 μM) on antileukemic activity by measuring cell viability, proliferation, ERK1/2 signaling, and apoptosis. We also investigated the effects of sorafenib treatment on the accumulation of cytarabine and phosphorylated metabolites in vitro. A human equivalent dose of sorafenib in nontumor-bearing NOD-SCID-IL2Rγ(null) mice was determined by pharmacokinetic studies using high performance liquid chromatography with tandem mass spectrometric detection, and steady-state concentrations were estimated by the fit of a one-compartment pharmacokinetic model to concentration-time data. The antitumor activity of sorafenib alone (60 mg/kg) twice daily, cytarabine alone (6.25 mg/kg administered intraperitoneally), or sorafenib once or twice daily plus cytarabine was evaluated in NOD-SCID-IL2Rγ(null) mice bearing AML xenografts. RESULTS Sorafenib at 10 μM inhibited cell viability, proliferation and ERK1/2 signaling, and induced apoptosis in all cell lines studied. Sorafenib also increased the cellular accumulation of cytarabine and metabolites resulting in additive to synergistic antileukemic activity. A dose of 60 mg/kg in mice produced a human equivalent sorafenib steady-state plasma exposure of 10 μM. The more dose-intensive twice-daily sorafenib plus cytarabine (n = 15) statistically significantly prolonged median survival in an AML xenograft model compared with sorafenib once daily plus cytarabine (n = 12), cytarabine alone (n = 26), or controls (n = 27) (sorafenib twice daily plus cytarabine, median survival = 46 days; sorafenib once daily plus cytarabine, median survival = 40 days; cytarabine alone, median survival = 36 days; control, median survival = 19 days; P < .001 for combination twice daily vs all other treatments listed). CONCLUSIONS Sorafenib in combination with cytarabine resulted in strong anti-AML activity in vitro and in vivo. These results warrant clinical evaluation of sorafenib with cytarabine-based regimens in molecularly heterogeneous AML.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Critical role for inflammasome-independent IL-1β production in osteomyelitis

John R. Lukens; Jordan M. Gross; Christopher Calabrese; Yoichiro Iwakura; Mohamed Lamkanfi; Peter Vogel; Thirumala-Devi Kanneganti

Significance The IL-1 cytokines, IL-1α and IL-1β, are proinflammatory cytokines that are implicated in numerous inflammatory and autoimmune diseases. This study demonstrates that dysregulated immune responses centrally contribute to the pathogenesis of osteomyelitis and identifies a critical role for IL-1β in driving the inflammatory cascade that provokes bone destruction. Caspase-1 activation in the inflammasome complex is the most well established mechanism for IL-1β secretion. Interestingly, inflammasome-independent sources of IL-1β were found to provoke inflammation and osteolytic bone disease. Our findings establish a unique role for inflammasome-independent IL-1β in autoinflammatory bone disease and osteomyelitis, and identify proline–serine–threonine phosphatase interacting protein 2 as a negative regulator of inflammasome-autonomous IL-1β. The immune system plays an important role in the pathophysiology of many acute and chronic bone disorders, but the specific inflammatory networks that regulate individual bone disorders remain to be elucidated. Here, we characterized the osteoimmunological underpinnings of osteolytic bone disease in Pstpip2cmo mice. These mice carry a homozygous L98P missense mutation in the Pombe Cdc15 homology family phosphatase PSTPIP2 that is responsible for the development of a persistent autoinflammatory disease resembling chronic recurrent multifocal osteomyelitis in humans. We found that improper regulation of IL-1β production resulted in secondary induction of inflammatory cytokines, inflammatory cell infiltration in the bone, and unremitting bone inflammation. Aberrant Il1β expression precedes the development of osteolytic damage in young Pstpip2cmo mice, and genetic deletion of Il1r and Il1β, but not Il1α, rescued osteolytic bone disease in mutant mice. Intriguingly, caspase-1 and nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain containing 3 activation in the inflammasome complex were dispensable for Pstpip2cmo-mediated bone disease. Thus, our findings establish a critical role for inflammasome-independent production of IL-1β in osteolytic bone disease and identify PSTPIP2 as a negative regulator of caspase-1–autonomous IL-1β production.


Cancer Research | 2013

Th-MYCN Mice with Caspase-8 Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis

Tal Teitz; Madoka Inoue; Marcus B. Valentine; Kejin Zhu; Jerold E. Rehg; Wei Zhao; David Finkelstein; Yong-Dong Wang; Melissa Johnson; Christopher Calabrese; Marcelo Rubinstein; Razqallah Hakem; William A. Weiss; Jill M. Lahti

Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due, in part, to the lack of animal models harboring bone marrow disease. The widely used transgenic model, the Th-MYCN mouse, exhibits limited metastasis to this site. Here, we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates 2 frequent alterations in metastatic neuroblastoma, overexpression of MYCN and loss of caspase-8 expression. Mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone Th-MYCN mouse. Although overexpression of MYCN by itself rarely caused bone marrow metastasis, combining MYCN overexpression and caspase-8 deletion significantly enhanced bone marrow metastasis (37% incidence). Microarray expression studies of the primary tumors mRNAs and microRNAs revealed extracellular matrix structural changes, increased expression of genes involved in epithelial to mesenchymal transition, inflammation, and downregulation of miR-7a and miR-29b. These molecular changes have been shown to be associated with tumor progression and activation of the cytokine TGF-β pathway in various tumor models. Cytokine TGF-β can preferentially promote single cell motility and blood-borne metastasis and therefore activation of this pathway may explain the enhanced bone marrow metastasis observed in this animal model.

Collaboration


Dive into the Christopher Calabrese's collaboration.

Top Co-Authors

Avatar

Richard J. Gilbertson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jerold E. Rehg

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Amar Gajjar

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Charles J. Sherr

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David Finkelstein

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Martine F. Roussel

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge