Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Huston is active.

Publication


Featured researches published by Christopher D. Huston.


Lancet Infectious Diseases | 2015

A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium

William Checkley; A. Clinton White; Devan Jaganath; Michael J. Arrowood; Rachel M. Chalmers; Xian Ming Chen; Ronald Fayer; Jeffrey K. Griffiths; Richard L. Guerrant; Lizbeth Hedstrom; Christopher D. Huston; Karen L. Kotloff; Gagandeep Kang; Jan R. Mead; Mark A. Miller; William A. Petri; Jeffrey W. Priest; David S. Roos; Boris Striepen; R.C. Andrew Thompson; H. Ward; Wesley A. Van Voorhis; Lihua Xiao; Guan Zhu; Eric R. Houpt

Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.


Cellular Microbiology | 2000

Caspase 3‐dependent killing of host cells by the parasite Entamoeba histolytica

Christopher D. Huston; Eric R. Houpt; Barbara J. Mann; Chang S. Hahn; William A. Petri

The parasite Entamoeba histolytica is named for its ability to lyse host tissues. To determine the factors responsible, we have initiated an examination of the contribution of parasite virulence factors and host caspases to cellular destruction by the parasite. Amoebic colitis in C3H/HeJ mice was associated with extensive host apoptosis at sites of E. histolytica invasion. In vitro studies of E. histolytica–Jurkat T‐cell interactions demonstrated that apoptosis required contact via the amoebic Gal/GalNAc lectin, but was unaffected by 75% inhibition of the amoebic cysteine proteinases. Parasite‐induced DNA fragmentation was unaffected in caspase 8‐deficient Jurkat cells treated with the caspase 9 inhibitor Ac‐LEHD‐fmk. In contrast, caspase 3‐like activity was observed within minutes of E. histolytica contact and the caspase 3 inhibitor Ac‐DEVD‐CHO blocked Jurkat T cell death, as measured by both DNA fragmentation and 51Cr release. These data demonstrate rapid parasite‐induced activation of caspase 3‐like caspases, independent of the upstream caspases 8 and 9, which is required for host cell death.


Infection and Immunity | 2003

Apoptotic Killing and Phagocytosis of Host Cells by the Parasite Entamoeba histolytica

Christopher D. Huston; Douglas R. Boettner; Vanessa Miller-Sims; William A. Petri

ABSTRACT The ability of Entamoeba histolytica to kill and phagocytose host cells correlates with parasite virulence. This study addressed the role of apoptotic cell killing and host cell phosphatidylserine exposure in the subsequent phagocytosis of Jurkat T cells by E. histolytica. Ingested host cells were apoptotic, as evidenced by the activation of caspase 3 in 88% ± 3% (mean and standard deviation [SD] of the mean) of Jurkat cells engulfed by E. histolytica; ingested cells without detectable active caspase 3 were already disrupted and partially digested. That apoptotic cell killing preceded phagocytosis was supported by the demonstration that a higher percentage of amebae ingested apoptotic cells than ingested healthy cells (62% ± 7% versus 30% ± 9%, respectively [mean and SD]) (P = 0.008). E. histolytica also ingested apoptotic Jurkat cells more rapidly than necrotic control cells (8.5% ± 0.4% versus 3.5% ± 0.7%, respectively [mean and SD]) (P < 0.001). The inhibition of amebic cytotoxicity with d-galactose (which blocks the amebic Gal/GalNAc lectin) blocked the phagocytosis of healthy cells by greater than 80%, providing further evidence that apoptosis preceded engulfment. In contrast, d-galactose blocked the phagocytosis of already apoptotic cells by only 40%, implicating an additional host ligand (besides d-galactose) in amebic engulfment of apoptotic cells. The most characteristic surface change on apoptotic cells is phosphatidylserine exposure. Consistent with a role for host cell phosphatidylserine exposure in amebic ingestion of killed cells, Jurkat cell phosphatidylserine was exposed during incubation with E. histolytica (27% ± 1% [mean and SD] specific increase at 30 min) (the P value versus the control was 0.0003). Approximately 50% more amebae ingested viable Jurkat cells expressing phosphatidylserine on the outer leaflet of the plasma membrane than ingested control cells (30.3% ± 2.2% versus 19.8% ± 1.9%, respectively [mean and SD]) (P = 0.003). By analogy with phagocytic clearance during apoptosis in metazoans, amebic apoptotic host cell killing followed by phagocytosis may limit inflammation and enable amebae to evade the host immune response.


Eukaryotic Cell | 2005

Proteomic Analysis of Phagocytosis in the Enteric Protozoan Parasite Entamoeba histolytica

Mami Okada; Christopher D. Huston; Barbara J. Mann; William A. Petri; Kiyoshi Kita; Tomoyoshi Nozaki

ABSTRACT Proteomic analysis of phagosomes isolated from Entamoeba histolytica by liquid chromatography and mass spectrometry identified 85 proteins involved in surface recognition, actin cytoskeleton rearrangement, vesicular trafficking, and degradation. Phagosome localization of representative proteins was verified by immunofluorescence assay. This study should provide a basis for molecular identification and characterization of phagosome biogenesis.


PLOS Pathogens | 2008

Entamoeba histolytica Phagocytosis of Human Erythrocytes Involves PATMK, a Member of the Transmembrane Kinase Family

Douglas R. Boettner; Christopher D. Huston; Alicia S. Linford; Sarah N. Buss; Eric R. Houpt; Nicholas E. Sherman; William A. Petri

Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMKΔ932). Expression of the carboxy-truncation of PATMKΔ932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.


Infection and Immunity | 2001

Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs.

Xunjia Cheng; Molly A. Hughes; Christopher D. Huston; Brendan J. Loftus; Carol A. Gilchrist; Lauren A. Lockhart; Salil Ghosh; Vanessa Miller-Sims; Barbara J. Mann; William A. Petri; Hiroshi Tachibana

ABSTRACT Killing by Entamoeba histolytica requires parasite adherence to host galactose- andN-acetyl-d-galactosamine (Gal/GalNAc)-containing cell surface receptors. A 260-kDa heterodimericE. histolytica Gal/GalNAc lectin composed of heavy (Hgl) and light (Lgl) subunits has been previously described. Here we present the cloning and characterization of Igl, a 150-kDa intermediate subunit of the Gal/GalNAc lectin. Igl, Hgl, and Lgl colocalized on the surface membrane of trophozoites. Two unlinked copies of genes encoding Igl shared 81% amino acid sequence identity (GenBank accession no.AF337950 and AF337951 ). They encoded cysteine-rich proteins with amino- and carboxy-terminal hydrophobic signal sequences characteristic of glycosylphosphatidylinositol (GPI)-anchored membrane proteins. The igl genes lacked carbohydrate recognition domains but were members of a large family of amebic genes containing CXXC and CXC motifs. These data indicate that Igl is part of the parasites multimolecular Gal/GalNAc adhesin required for host interaction.


Infection and Immunity | 2005

Entamoeba histolytica and Entamoeba dispar Utilize Externalized Phosphatidylserine for Recognition and Phagocytosis of Erythrocytes

Douglas R. Boettner; Christopher D. Huston; James A. Sullivan; William A. Petri

ABSTRACT Amebic erythrophagocytosis is characteristic of invasive amebiasis, and mutants deficient in erythrocyte ingestion are avirulent. We sought to understand the molecular mechanisms underlying erythrocyte phagocytosis by Entamoeba histolytica. Following adherence to amebae, erythrocytes became round and crenulated, and phosphatidylserine (PS) was exposed on their outer membrane leaflets. These changes were similar to the effects of calcium treatment on erythrocytes, which we utilized to separate ameba-induced exposure of erythrocyte PS from the process of phagocytosis. The adherence and phagocytosis of calcium-treated erythrocytes were less inhibited by galactose than were those of healthy erythrocytes, suggesting the existence of an amebic coreceptor specific for PS. To test whether PS was recognized by amebae, calcium-treated cells were incubated with annexin V prior to adherence to or ingestion by E. histolytica. Annexin V blocked both adherence (50% ± 12% inhibition; P < 0.05) and phagocytosis (65% ± 10%; P < 0.05), providing evidence that at least one galactose-independent coreceptor was involved in the adherence and ingestion of red blood cells. The coreceptor was inhibited by phospho-l-serine and to a lesser extent by phospho-d-serine but not by phospho-l-threonine, which is consistent with the coreceptor functioning in the adherence and ingestion of erythrocytes via recognition of PS. We expanded our investigations to the highly related but noninvasive parasite Entamoeba dispar and demonstrated that it was deficient in red-blood-cell adherence, induction of PS exposure, and phagocytosis. These findings establish phosphatidylserine involvement in erythrophagocytosis by amebae and suggest the existence of a PS receptor on the surfaces of both E. histolytica and E. dispar.


Antimicrobial Agents and Chemotherapy | 2013

Drug Repurposing Screen Reveals FDA-Approved Inhibitors of Human HMG-CoA Reductase and Isoprenoid Synthesis That Block Cryptosporidium parvum Growth

Kovi Bessoff; Adam Sateriale; K. Kyungae Lee; Christopher D. Huston

ABSTRACT Cryptosporidiosis, a diarrheal disease usually caused by Cryptosporidium parvum or Cryptosporidium hominis in humans, can result in fulminant diarrhea and death in AIDS patients and chronic infection and stunting in children. Nitazoxanide, the current standard of care, has limited efficacy in children and is no more effective than placebo in patients with advanced AIDS. Unfortunately, the lack of financial incentives and the technical difficulties associated with working with Cryptosporidium parasites have crippled efforts to develop effective treatments. In order to address these obstacles, we developed and validated (Z′ score = 0.21 to 0.47) a cell-based high-throughput assay and screened a library of drug repurposing candidates (the NIH Clinical Collections), with the hopes of identifying safe, FDA-approved drugs to treat cryptosporidiosis. Our screen yielded 21 compounds with confirmed activity against C. parvum growth at concentrations of <10 μM, many of which had well-defined mechanisms of action, making them useful tools to study basic biology in addition to being potential therapeutics. Additional work, including structure-activity relationship studies, identified the human 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor itavastatin as a potent inhibitor of C. parvum growth (50% inhibitory concentration [IC50] = 0.62 μM). Bioinformatic analysis of the Cryptosporidium genomes indicated that the parasites lack all known enzymes required for the synthesis of isoprenoid precursors. Additionally, itavastatin-induced growth inhibition of C. parvum was partially reversed by the addition of exogenous isopentenyl pyrophosphate, suggesting that itavastatin reduces Cryptosporidium growth via on-target inhibition of host HMG-CoA reductase and that the parasite is dependent on the host cell for synthesis of isoprenoid precursors.


Infection and Immunity | 2008

Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells.

Jose E. Teixeira; Christopher D. Huston

ABSTRACT Entamoeba histolytica is an intestinal ameba that causes dysentery and liver abscesses. Cytotoxicity and phagocytosis of host cells characterize invasive E. histolytica infection. Prior to phagocytosis of host cells, E. histolytica induces apoptotic host cell death, using a mechanism that requires contact via an amebic galactose-specific lectin. However, lectin inhibition only partially blocks phagocytosis of already dead cells, implicating at least one additional receptor in phagocytosis. To identify receptors for engulfment of apoptotic cells, monoclonal antibodies against E. histolytica membrane antigens were screened for inhibition of phagocytosis. Of 43 antibodies screened, one blocked lectin-independent uptake of apoptotic cells, with >90% inhibition at a dose of 20 μg/ml (P < 0.0003 versus control). The same antibody also inhibited adherence to apoptotic lymphocytes and, to a lesser extent, adherence to and killing of viable lymphocytes. The antigen recognized by the inhibitory antibody was purified by affinity chromatography and identified by liquid chromatography-mass spectrometry as the serine-rich E. histolytica protein (SREHP). Consistent with this, the inhibitory antibody bound to recombinant SREHP present in bacterial lysates on immunoblots. The SREHP is an abundant immunogenic surface protein of unclear function. The results of this unbiased antibody screen strongly implicate the SREHP as a participant in E. histolytica phagocytosis and suggest that it may play an important role in adherence to apoptotic cells.


Antimicrobial Agents and Chemotherapy | 2014

Identification of Cryptosporidium parvum Active Chemical Series by Repurposing the Open Access Malaria Box

Kovi Bessoff; Thomas Spangenberg; Jenna E. Foderaro; Rajiv S. Jumani; Gary E. Ward; Christopher D. Huston

ABSTRACT The apicomplexan parasites Cryptosporidium parvum and Cryptosporidium hominis are major etiologic agents of human cryptosporidiosis. The infection is typically self-limited in immunocompetent adults, but it can cause chronic fulminant diarrhea in immunocompromised patients and malnutrition and stunting in children. Nitazoxanide, the current standard of care for cryptosporidiosis, is only partially efficacious for children and is no more effective than a placebo for AIDS patients. Unfortunately, financial obstacles to drug discovery for diseases that disproportionately affect low-income countries and technical limitations associated with studies of Cryptosporidium biology impede the development of better drugs for treating cryptosporidiosis. Using a cell-based high-throughput screen, we queried the Medicines for Malaria Venture (MMV) Open Access Malaria Box for activity against C. parvum. We identified 3 novel chemical series derived from the quinolin-8-ol, allopurinol-based, and 2,4-diamino-quinazoline chemical scaffolds that exhibited submicromolar potency against C. parvum. Potency was conserved in a subset of compounds from each scaffold with varied physicochemical properties, and two of the scaffolds identified exhibit more rapid inhibition of C. parvum growth than nitazoxanide, making them excellent candidates for further development. The 2,4-diamino-quinazoline and allopurinol-based compounds were also potent growth inhibitors of the related apicomplexan parasite Toxoplasma gondii, and a good correlation was observed in the relative activities of the compounds in the allopurinol-based series against T. gondii and C. parvum. Taken together, these data illustrate the utility of the Open Access Malaria Box as a source of both potential leads for drug development and chemical probes to elucidate basic biological processes in C. parvum and other apicomplexan parasites.

Collaboration


Dive into the Christopher D. Huston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara J. Mann

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge