Christopher D. Kontos
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher D. Kontos.
American Journal of Pathology | 2001
Benedetta Bussolati; Caroline Dunk; Malcolm Grohman; Christopher D. Kontos; Justin C. Mason; Asif Ahmed
The known responses of vascular endothelial growth factor (VEGF) are mediated through VEGF receptor-2 (VEGFR-2/KDR) in endothelial cells. However, it is unknown whether VEGFR-1 (Flt-1) is an inert decoy or a signaling receptor for VEGF during physiological or pathological angiogenesis. Here we report that VEGF-stimulated nitric oxide (NO) release is inhibited by blockade of VEGFR-1 and that VEGFR-1 via NO negatively regulates of VEGFR-2-mediated proliferation and promotes formation of capillary networks in human umbilical vein endothelial cells (HUVECs). Inhibition of VEGFR-1 in a murine Matrigel angiogenesis assay induced large aneurysm-like structures. VEGF-induced capillary growth over 14 days was inhibited by anti-VEGFR-2-blocking antibody as determined by reduced tube length between capillary connections (P < 0.0001) in an in vitro angiogenesis assay. In contrast, loss of VEGFR-1 activity with a neutralizing anti-VEGFR-1 antibody resulted in an increase in the accumulation of endothelial cells (P < 0.0001) and a dramatic decrease in the number of capillary connections that were restored by the addition of NO donor. Porcine aortic endothelial (PAE) cells expressing human VEGFR-1 but not VEGFR-2 plated on growth factor-reduced Matrigel rearranged into tube-like structures that were prevented by anti-VEGFR-1 antibody or a cGMP inhibitor. VEGF stimulated NO release from VEGFR-1- but not VEGFR-2-transfected endothelial cells and placenta growth factor-1 stimulated NO release in HUVECs. Blockade of VEGFR-1 increased VEGF-mediated HUVEC proliferation that was inhibited by NO donors, and potentiated by NO synthase inhibitors. These data indicate that VEGFR-1 is a signaling receptor that promotes endothelial cell differentiation into vascular tubes, in part by limiting VEGFR-2-mediated endothelial cell proliferation via NO, which seems to be a molecular switch for endothelial cell differentiation.
Molecular and Cellular Biology | 1998
Christopher D. Kontos; Thomas P. Stauffer; Wen-Pin Yang; John D. York; Liwen Huang; Michael A. Blanar; Tobias Meyer; Kevin G. Peters
ABSTRACT Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.
Nature Medicine | 2005
Songling Liu; Richard T. Premont; Christopher D. Kontos; Shoukang Zhu; Don C. Rockey
Nitric oxide (NO) production by endothelial cell nitric oxide synthase (eNOS) in sinusoidal endothelial cells is reduced in the injured liver and leads to intrahepatic portal hypertension. We sought to understand the mechanism underlying defective eNOS function. Phosphorylation of the serine-threonine kinase Akt, which activates eNOS, was substantially reduced in sinusoidal endothelial cells from injured livers. Overexpression of Akt in vivo restored phosphorylation of Akt and production of NO and reduced portal pressure in portal hypertensive rats. We found that Akt physically interacts with G-protein-coupled receptor kinase-2 (GRK2), and that this interaction inhibits Akt activity. Furthermore, GRK2 expression increased in sinusoidal endothelial cells from portal hypertensive rats and knockdown of GRK2 restored Akt phosphorylation and NO production, and normalized portal pressure. Finally, after liver injury, GRK2-deficient mice developed less severe portal hypertension than control mice. Thus, an important mechanism underlying impaired activity of eNOS in injured sinusoidal endothelial cells is defective phosphorylation of Akt caused by overexpression of GRK2 after injury.
Circulation Research | 2004
Minako Yamaoka-Tojo; Masuko Ushio-Fukai; Lula Hilenski; Sergey Dikalov; Yuqing E. Chen; Taiki Tojo; Tohru Fukai; Mitsuaki Fujimoto; Nikolay Patrushev; Ningning Wang; Christopher D. Kontos; George S. Bloom; R. Wayne Alexander
Endothelial cell (EC) proliferation and migration are important for reendothelialization and angiogenesis. We have demonstrated that reactive oxygen species (ROS) derived from the small GTPase Rac1-dependent NAD(P)H oxidase are involved in vascular endothelial growth factor (VEGF)–mediated endothelial responses mainly through the VEGF type2 receptor (VEGFR2). Little is known about the underlying molecular mechanisms. IQGAP1 is a scaffolding protein that controls cellular motility and morphogenesis by interacting directly with cytoskeletal, cell adhesion, and small G proteins, including Rac1. In this study, we show that IQGAP1 is robustly expressed in ECs and binds to the VEGFR2. A pulldown assay using purified proteins demonstrates that IQGAP1 directly interacts with active VEGFR2. In cultured ECs, VEGF stimulation rapidly promotes recruitment of Rac1 to IQGAP1, which inducibly binds to VEGFR2 and which, in turn, is associated with tyrosine phosphorylation of IQGAP1. Endogenous IQGAP1 knockdown by siRNA shows that IQGAP1 is involved in VEGF-stimulated ROS production, Akt phosphorylation, endothelial migration, and proliferation. Wound assays reveal that IQGAP1 and phosphorylated VEGFR2 accumulate and colocalize at the leading edge in actively migrating ECs. Moreover, we found that IQGAP1 expression is dramatically increased in the VEGFR2-positive regenerating EC layer in balloon-injured rat carotid artery. These results suggest that IQGAP1 functions as a VEGFR2-associated scaffold protein to organize ROS-dependent VEGF signaling, thereby promoting EC migration and proliferation, which may contribute to repair and maintenance of the functional integrity of established blood vessels.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Brian Lima; Gregory K.W. Lam; Liang Xie; Diana L. Diesen; Nestor Villamizar; Jeffrey Nienaber; Emily Messina; Dawn E. Bowles; Christopher D. Kontos; Joshua M. Hare; Jonathan S. Stamler; Howard A. Rockman
Despite substantial evidence that nitric oxide (NO) and/or endogenous S-nitrosothiols (SNOs) exert protective effects in a variety of cardiovascular diseases, the molecular details are largely unknown. Here we show that following left coronary artery ligation, mice with a targeted deletion of the S-nitrosoglutathione reductase gene (GSNOR−/−) have reduced myocardial infarct size, preserved ventricular systolic and diastolic function, and maintained tissue oxygenation. These profound physiological effects are associated with increases in myocardial capillary density and S-nitrosylation of the transcription factor hypoxia inducible factor-1α (HIF-1α) under normoxic conditions. We further show that S-nitrosylated HIF-1α binds to the vascular endothelial growth factor (VEGF) gene, thus identifying a role for GSNO in angiogenesis and myocardial protection. These results suggest innovative approaches to modulate angiogenesis and preserve cardiac function.
Journal of Biological Chemistry | 2002
Jianhua Huang; Christopher D. Kontos
Phosphatidylinositol 3-kinase is activated by vascular endothelial growth factor (VEGF), and many of the angiogenic cellular responses of VEGF are regulated by the lipid products of phosphatidylinositol 3-kinase. The tumor suppressor PTEN has been shown to down-regulate phosphatidylinositol 3-kinase signaling, yet the effects of PTEN on VEGF-mediated signaling and angiogenesis are unknown. Inhibition of endogenous PTEN in cultured endothelial cells by adenovirus-mediated overexpression of a dominant negative PTEN mutant (PTEN-C/S) enhanced VEGF-mediated Akt phosphorylation, and this effect correlated with decreases in caspase-3 cleavage, caspase-3 activity, and DNA degradation after induction of apoptosis with tumor necrosis factor-α. Overexpression of PTEN-C/S also enhanced VEGF-mediated endothelial cell proliferation and migration. In contrast, overexpression of wild-type PTEN inhibited the anti-apoptotic, proliferative, and chemotactic effects of VEGF. Moreover, PTEN-C/S increased the length of vascular sprouts in the rat aortic ring assay and modulated VEGF-mediated tube formation in an in vitroangiogenesis assay, whereas PTEN-wild type inhibited these effects. Taken together, these findings demonstrate that PTEN potently modulates VEGF-mediated signaling and function and that PTEN is a viable target in therapeutic approaches to promote or inhibit angiogenesis.
Journal of Controlled Release | 2011
Andrew J. Simnick; Miriam Amiram; Wenge Liu; Gabi Hanna; Mark W. Dewhirst; Christopher D. Kontos; Ashutosh Chilkoti
Antivascular targeting is a promising strategy for tumor therapy. This strategy has the potential to overcome many of the transport barriers associated with targeting tumor cells in solid tumors, because the tumor vasculature is directly accessible to targeting vehicles in systemic circulation. We report a novel nanoscale delivery system consisting of multivalent polymer micelles to target receptors that are preferentially upregulated in the tumor vasculature and perivascular cells, specifically CD13. To this end we utilized amphiphilic block copolymers, composed of a genetically engineered elastin-like polypeptide (ELP) that self-assemble into monodisperse spherical micelles. These polymer micelles were functionalized by incorporating the NGR tripeptide ligand, which targets the CD13 receptor, on their corona. We examined the self-assembly and in vivo tumor targeting by these NGR-functionalized nanoparticles and show that multivalent presentation of NGR by micelle self-assembly selectively targets the tumor vasculature by targeting CD13. Furthermore, we show greater vascular retention and extravascular accumulation of nanoparticles in tumor tissue compared to normal tissue, although the enhancement is modest. These results suggest that enhanced delivery to solid tumors can be achieved by targeting upregulated receptors in the tumor vasculature with multivalent ligand-presenting nanoparticles, but additional work is required to optimize such systems for multivalent targeting.
Journal of Cellular and Molecular Medicine | 2009
Florence T. H. Wu; Marianne O. Stefanini; Feilim Mac Gabhann; Christopher D. Kontos; Brian H. Annex; Aleksander S. Popel
• Introduction ‐ Angiogenesis in physiology and pathology ‐ Angiogenesis in current medicine ‐ VEGF ligand and receptor system: where does sVEGFR1 fit? ‐ Ligands: the human VEGF family ‐ Membrane‐bound signalling receptors: VEGFRs ‐ Non‐signalling co‐receptors and matrix proteins: HSPGs and NRPs ‐ Soluble receptors: sVEGFR1, sVEGFR2, sNRP1 • Molecular biology of sVEGFR1 • Physiological and pathophysiological roles of sVEGFR1 • Molecular mechanism of sVEGFR1’s anti‐angiogenic potential • sVEGFR1 as a clinical marker for disease • Plasma VEGF and sVEGFR1: non‐uniform predictors of angiogenic status across all diseases • Systems biology perspective: unifying interpretation of plasma angiogenic markers ‐ Baseline heterogeneity in clinical measurements of healthy VEGF and sVEGFR1 levels in plasma ‐ Effect of sVEGFR1 on VEGF bioavailability: VEGF‐sVEGFR1 complexes ‐ Compartmental analysis: biotransport and biodistribution ‐ Pathogenic phenomenon versus compensatory response • Concluding remarks
Proceedings of the National Academy of Sciences of the United States of America | 2003
Rebekah R. White; Siqing Shan; Christopher P. Rusconi; Geetha Shetty; Mark W. Dewhirst; Christopher D. Kontos; Bruce A. Sullenger
Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent.
Circulation Research | 2007
Surovi Hazarika; Ayotunde O. Dokun; Yongjun Li; Aleksander S. Popel; Christopher D. Kontos; Brian H. Annex
Deficient angiogenesis after ischemia may contribute to worse outcomes of peripheral arterial disease in patients with diabetes mellitus (DM). Vascular endothelial growth factor (VEGF) and its receptors promote angiogenesis. We hypothesized that in peripheral arterial disease, maladaptive changes in VEGF ligand/receptor expression could account for impaired angiogenesis in DM. Skeletal muscle from diet-induced, type 2 diabetic (DM) and age-matched normal chow (NC)-fed mice was collected at baseline and 3 and 10 days after hindlimb ischemia and analyzed for expression of VEGF (n=10 per group), full-length VEGF receptor (VEGFR)-1, soluble VEGFR-1, and markers of downstream VEGF signaling (n=20 per group) using ELISA, reverse transcriptase-polymerase chain reaction, and Western blots. In the absence of ischemia, DM mice had increased VEGF (NC versus DM: 26.6±2.6 versus 53.5±8.8 pg/mg protein; P<0.05), decreased soluble and membrane-bound VEGFR-1 (NC versus DM: 1.44±0.30 versus 0.85±0.08 and 1.03±0.10 versus 0.72±0.10, respectively; P<0.05), decreased phospho-AKT/AKT and phospho–endothelial NO synthase/endothelial NO synthase (NC versus DM: 0.76±0.2 versus 0.38±0.1 and 0.36±0.06 versus 0.25±0.04, respectively; P<0.05), and no change in VEGFR-2. After ischemia, both DM and NC had comparable increases in VEGF-A. VEGFR-1 and soluble VEGFR-1 expression increased in both groups, but the fold increase was significantly greater in DM. These data demonstrate that soluble VEGFR-1, an angiogenesis inhibitor, is regulated in skeletal muscle by type 2 DM and ischemia. In the absence of ischemia, despite reductions in both soluble VEGFR-1 and VEGFR-1, VEGF ligand signaling is lower in DM compared with controls. After ischemia, maladaptive upregulation of these receptors further reduces the capacity of VEGF to induce an angiogenic response, which may provide a novel target for therapy.