Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Makinson is active.

Publication


Featured researches published by Christopher D. Makinson.


Nature Methods | 2015

Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture

Anca M. Pasca; Steven A. Sloan; Laura Clarke; Yuan Tian; Christopher D. Makinson; Nina Huber; Kim Ch; Park Jy; Nancy A. O'Rourke; Khoa D. Nguyen; Stephen J. Smith; Huguenard; Daniel H. Geschwind; Ben A. Barres; Sergiu P. Paşca

The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex–like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.


Nature | 2017

Assembly of functionally integrated human forebrain spheroids

Fikri Birey; Jimena Andersen; Christopher D. Makinson; Saiful Islam; Wu Wei; Nina Huber; H. Christina Fan; Kimberly R. Cordes Metzler; Georgia Panagiotakos; Nicholas Thom; Nancy O’Rourke; Lars M. Steinmetz; Jonathan A. Bernstein; Joachim Hallmayer; John R. Huguenard; Sergiu P. Paşca

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome—a neurodevelopmental disorder that is caused by mutations in the CaV1.2 calcium channel—interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.


Neurobiology of Disease | 2013

Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility.

Stacey B. Dutton; Christopher D. Makinson; Ligia A. Papale; Anupama Shankar; Bindu Balakrishnan; Kazu Nakazawa; Andrew Escayg

Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.


Epilepsia | 2013

Altered Sleep Regulation in a Mouse Model of SCN1A-Derived Genetic Epilepsy with Febrile Seizures Plus (GEFS+)

Ligia A. Papale; Christopher D. Makinson; J. Christopher Ehlen; Sergio Tufik; Michael J. Decker; Ketema N. Paul; Andrew Escayg

Mutations in the voltage‐gated sodium channel (VGSC) gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations.


Neurobiology of Disease | 2014

Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance

Christopher D. Makinson; Brian S. Tanaka; Tyra Lamar; Alan L. Goldin; Andrew Escayg

SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.


Genes, Brain and Behavior | 2016

Scn1a dysfunction alters behavior but not the effect of stress on seizure response

Nikki T. Sawyer; A. W. Helvig; Christopher D. Makinson; M. J. Decker; G. N. Neigh; Andrew Escayg

Mutations in the voltage‐gated sodium channel gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition, dysfunction in SCN1A is increasingly being linked to neuropsychiatric abnormalities, social deficits and cognitive disabilities. We have previously reported that mice heterozygous for the SCN1A R1648H mutation identified in a GEFS+ family have infrequent spontaneous seizures, increased susceptibility to chemically and hyperthermia‐induced generalized seizures and sleep abnormalities. In this study, we characterized the behavior of heterozygous mice expressing the SCN1A R1648H mutation (Scn1aRH/+) and the effect of stress on spontaneous and induced seizures. We also examined the effect of the R1648H mutation on the hypothalamic–pituitary–adrenal (HPA) axis response. We confirmed our previous finding that Scn1aRH/+ mutants are hyperactive, and also identified deficits in social behavior, spatial memory, cued fear conditioning, pre‐pulse inhibition and risk assessment. Furthermore, while exposure to a stressor did increase seizure susceptibility, the effect seen in the Scn1aRH/+ mutants was similar to that seen in wild‐type littermates. In addition, Scn1a dysfunction does not appear to alter HPA axis function in adult animals. Our results suggest that the behavioral abnormalities associated with Scn1a dysfunction encompass a wider range of phenotypes than previously reported and factors such as stress exposure may alter disease severity in patients with SCN1A mutations.


Psychopharmacology | 2013

Effects of an epilepsy-causing mutation in the SCN1A sodium channel gene on cocaine-induced seizure susceptibility in mice

Ryan H. Purcell; Ligia A. Papale; Christopher D. Makinson; Nikki T. Sawyer; Jason P. Schroeder; Andrew Escayg; David Weinshenker

RationaleHigh doses of cocaine can elicit seizures in humans and in laboratory animals. Several mechanisms have been proposed for the induction of seizures by cocaine, including enhanced monoaminergic signaling, blockade of ion channels, and alterations in GABA and glutamate transmission. Mutations in the SCN1A gene, which encodes the central nervous system (CNS) voltage-gated sodium channel (VGSC) Nav1.1, are responsible for several human epilepsy disorders including Dravet syndrome and genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Mice heterozygous for the R1648H GEFS+ mutation (RH mice) exhibit reduced interneuron excitability, spontaneous seizures, and lower thresholds to flurothyl- and hyperthermia-induced seizures. However, it is unknown whether impaired CNS VGSC function or a genetic predisposition to epilepsy increases susceptibility to cocaine-induced seizures.ObjectivesOur primary goal was to determine whether Scn1a dysfunction caused by the RH mutation alters sensitivity to cocaine-induced behavioral and electrographic (EEG) seizures. We also tested novelty- and cocaine-induced locomotor activity and assessed the expression of Nav1.1 in midbrain dopaminergic neurons.ResultsWe found that RH mice had a profound increase in cocaine-induced behavioral seizure susceptibility compared to wild-type (WT) controls, which was confirmed with cortical EEG recordings. By contrast, although the RH mice were hyperactive in novel environments, cocaine-induced locomotor activity was comparable between the mutants and WT littermates. Finally, immunofluorescence experiments revealed a lack of Nav1.1 immunoreactivity in dopaminergic neurons.ConclusionThese data indicate that a disease-causing CNS VGSC mutation confers susceptibility to the proconvulsant, but not motoric, effects of cocaine.


Nature Neuroscience | 2015

Attentional flexibility in the thalamus: now we're getting SOMwhere.

Christopher D. Makinson; John R. Huguenard

Loss of the receptor tyrosine kinase ErbB4 in somatostatin (SOM) inhibitory neurons of the thalamic reticular nucleus (TRN) enhances top-down cortical feedback, improving feature detection at the cost of reduced ability to switch attention. The study furthers our understanding of the circuit mechanisms underlying TRN function.


Experimental Neurology | 2016

An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior

Christopher D. Makinson; Karoni Dutt; Frank G. Lin; Ligia A. Papale; Anupama Shankar; Arthur J. Barela; Robert C. Liu; Alan L. Goldin; Andrew Escayg

Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.


Scientific Reports | 2018

Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy

Jennifer C. Wong; Christopher D. Makinson; Tyra Lamar; Qi Cheng; Jeffrey C. Wingard; Ernest F. Terwilliger; Andrew Escayg

We previously found that genetic mutants with reduced expression or activity of Scn8a are resistant to induced seizures and that co-segregation of a mutant Scn8a allele can increase survival and seizure resistance of Scn1a mutant mice. In contrast, Scn8a expression is increased in the hippocampus following status epilepticus and amygdala kindling. These findings point to Scn8a as a promising therapeutic target for epilepsy and raise the possibility that aberrant overexpression of Scn8a in limbic structures may contribute to some epilepsies, including temporal lobe epilepsy. Using a small-hairpin-interfering RNA directed against the Scn8a gene, we selectively reduced Scn8a expression in the hippocampus of the intrahippocampal kainic acid (KA) mouse model of mesial temporal lobe epilepsy. We found that Scn8a knockdown prevented the development of spontaneous seizures in 9/10 mice, ameliorated KA-induced hyperactivity, and reduced reactive gliosis. These results support the potential of selectively targeting Scn8a for the treatment of refractory epilepsy.

Collaboration


Dive into the Christopher D. Makinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Goldin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge