Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Scharer is active.

Publication


Featured researches published by Christopher D. Scharer.


Cancer Research | 2006

Sex-Determining Region Y Box 4 Is a Transforming Oncogene in Human Prostate Cancer Cells

Pengbo Liu; Mohamed Ali Seyed; Christopher D. Scharer; Noelani Laycock; W. Brian Dalton; Holly C. Williams; Suresh Karanam; Milton W. Datta; David L. Jaye; Carlos S. Moreno

Prostate cancer is the most commonly diagnosed noncutaneous neoplasm and second most common cause of cancer-related mortality in western men. To investigate the mechanisms of prostate cancer development and progression, we did expression profiling of human prostate cancer and benign tissues. We show that the SOX4 is overexpressed in prostate tumor samples compared with benign tissues by microarray analysis, real-time PCR, and immunohistochemistry. We also show that SOX4 expression is highly correlated with Gleason score at the mRNA and protein level using tissue microarrays. Genes affected by SOX4 expression were also identified, including BCL10, CSF1, and NcoA4/ARA70. TLE-1 and BBC3/PUMA were identified as direct targets of SOX4. Silencing of SOX4 by small interfering RNA transfection induced apoptosis of prostate cancer cells, suggesting that SOX4 could be a therapeutic target for prostate cancer. Stable transfection of SOX4 into nontransformed prostate cells enabled colony formation in soft agar, suggesting that, in the proper cellular context, SOX4 can be a transforming oncogene.


Cancer Research | 2009

Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells.

Christopher D. Scharer; Colleen D. McCabe; Mohamed Ali-Seyed; Michael F. Berger; Martha L. Bulyk; Carlos S. Moreno

SOX4 is a critical developmental transcription factor in vertebrates and is required for precise differentiation and proliferation in multiple tissues. In addition, SOX4 is overexpressed in many human malignancies, but the exact role of SOX4 in cancer progression is not well understood. Here, we have identified the direct transcriptional targets of SOX4 using a combination of genome-wide localization chromatin immunoprecipitation-chip analysis and transient overexpression followed by expression profiling in a prostate cancer model cell line. We have also used protein-binding microarrays to derive a novel SOX4-specific position-weight matrix and determined that SOX4 binding sites are enriched in SOX4-bound promoter regions. Direct transcriptional targets of SOX4 include several key cellular regulators, such as EGFR, HSP70, Tenascin C, Frizzled-5, Patched-1, and Delta-like 1. We also show that SOX4 targets 23 transcription factors, such as MLL, FOXA1, ZNF281, and NKX3-1. In addition, SOX4 directly regulates expression of three components of the RNA-induced silencing complex, namely Dicer, Argonaute 1, and RNA Helicase A. These data provide new insights into how SOX4 affects developmental signaling pathways and how these changes may influence cancer progression via regulation of gene networks involved in microRNA processing, transcriptional regulation, the TGFbeta, Wnt, Hedgehog, and Notch pathways, growth factor signaling, and tumor metastasis.


Journal of Immunology | 2013

Global DNA methylation remodeling accompanies CD8 T cell effector function

Christopher D. Scharer; Benjamin G. Barwick; Benjamin Alan Youngblood; Rafi Ahmed; Jeremy M. Boss

The differentiation of CD8 T cells in response to acute infection results in the acquisition of hallmark phenotypic effector functions; however, the epigenetic mechanisms that program this differentiation process on a genome-wide scale are largely unknown. In this article, we report the DNA methylomes of Ag-specific naive and day-8 effector CD8 T cells following acute lymphocytic choriomeningitis virus infection. During effector CD8 T cell differentiation, DNA methylation was remodeled such that changes in DNA methylation at gene promoter regions correlated negatively with gene expression. Importantly, differentially methylated regions were enriched at cis-elements, including enhancers active in naive T cells. Differentially methylated regions were associated with cell type–specific transcription factor binding sites, and these transcription factors clustered into modules that define networks targeted by epigenetic regulation and control of effector CD8 T cell function. Changes in the DNA methylation profile following CD8 T cell activation revealed numerous cellular processes, cis-elements, and transcription factor networks targeted by DNA methylation. Together, the results demonstrated that DNA methylation remodeling accompanies the acquisition of the CD8 T cell effector phenotype and repression of the naive cell state. Therefore, these data provide the framework for an epigenetic mechanism that is required for effector CD8 T cell differentiation and adaptive immune responses.


Cell Reports | 2015

Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway

Rheinallt Jones; Chirayu Desai; Trevor Darby; Liping Luo; Alexandra A. Wolfarth; Christopher D. Scharer; Courtney S. Ardita; April R. Reedy; Erin S. Keebaugh; Andrew S. Neish

An optimal gut microbiota influences many beneficial processes in the metazoan host. However, the molecular mechanisms that mediate and function in symbiont-induced host responses have not yet been fully characterized. Here, we report that cellular ROS enzymatically generated in response to contact with lactobacilli in both mice and Drosophila has salutary effects against exogenous insults to the intestinal epithelium via the activation of Nrf2 responsive cytoprotective genes. These data show that the xenobiotic-inducible Nrf2 pathway participates as a signaling conduit between the prokaryotic symbiont and the eukaryotic host. Indeed, our data imply that the capacity of lactobacilli to induce redox signaling in epithelial cells is a highly conserved hormetic adaptation to impel cellular conditioning to exogenous biotic stimuli. These data also highlight the role the microbiota plays in eukaryotic cytoprotective pathways and may have significant implications in the characterization of a eubiotic microbiota.


Journal of Translational Medicine | 2008

Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells

Christopher D. Scharer; Noelani Laycock; Adeboye O. Osunkoya; Sanjay Logani; John F. McDonald; Benedict B. Benigno; Carlos S. Moreno

BackgroundA large percentage of patients with recurrent ovarian cancer develop resistance to the taxane class of chemotherapeutics. While mechanisms of resistance are being discovered, novel treatment options and a better understanding of disease resistance are sorely needed. The mitotic kinase Aurora-A directly regulates cellular processes targeted by the taxanes and is overexpressed in several malignancies, including ovarian cancer. Recent data has shown that overexpression of Aurora-A can confer resistance to the taxane paclitaxel.MethodsWe used expression profiling of ovarian tumor samples to determine the most significantly overexpressed genes. In this study we sought to determine if chemical inhibition of the Aurora kinase family using VE-465 could synergize with paclitaxel to induce apoptosis in paclitaxel-resistant and sensitive ovarian cancer cells.ResultsAurora-A kinase and TPX2, an activator of Aurora-A, are two of the most significantly overexpressed genes in ovarian carcinomas. We show that inhibition of the Aurora kinases prevents phosphorylation of a mitotic marker and demonstrate a dose-dependent increase of apoptosis in treated ovarian cancer cells. We demonstrate at low doses that are specific to Aurora-A, VE-465 synergizes with paclitaxel to induce 4.5-fold greater apoptosis than paclitaxel alone in 1A9 cells. Higher doses are needed to induce apoptosis in paclitaxel-resistant PTX10 cells.ConclusionOur results show that VE-465 is a potent killer of taxane resistant ovarian cancer cells and can synergize with paclitaxel at low doses. These data suggest patients whose tumors exhibit high Aurora-A expression may benefit from a combination therapy of taxanes and Aurora-A inhibition.


Journal of Immunology | 2012

ZBTB32 Is an Early Repressor of the CIITA and MHC Class II Gene Expression during B Cell Differentiation to Plasma Cells

Hye Suk Yoon; Christopher D. Scharer; Parimal Majumder; Carl W. Davis; Royce Butler; Wendy M. Zinzow-Kramer; Ioanna Skountzou; Dimitrios G. Koutsonanos; Rafi Ahmed; Jeremy M. Boss

CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.


Journal of Immunology | 2015

NF-κB Regulates PD-1 Expression in Macrophages

Alexander P. R. Bally; Peiyuan Lu; Yan Tang; James W. Austin; Christopher D. Scharer; Rafi Ahmed; Jeremy M. Boss

Programmed cell death-1 (PD-1) is responsible for T cell exhaustion during chronic viral infections and is expressed on a variety of immune cells following activation. Despite its importance, the mechanisms that regulate PD-1 in cell types other than CD8 T cells are poorly defined. In this study, the molecular mechanisms for inducing PD-1 expression in CD4 T cells, macrophages, and B cells were explored. In CD4 T cells, PD-1 induction following TCR stimulation required NFAT, as the calcineurin/NFAT pathway inhibitor cyclosporin A was able to block PD-1 induction in a manner similar to that seen in CD8 T cells. In contrast, LPS but not PMA and ionomycin stimulation was able to induce PD-1 expression in macrophages in a manner insensitive to cyclosporin A–mediated inhibition. B cells could use both pathways, although the levels of PD-1 expression were highest with PMA and ionomycin. An NF-κB binding site located upstream of the gene in conserved region C was required for NF-κB–dependent PD-1 gene activation in macrophages. Chromatin immunoprecipitation showed NF-κB p65 binding to this region following stimulation of macrophages with LPS. PD-1 induction was associated with histone modifications characteristic of accessible chromatin; however, in contrast to CD8 T cells, conserved region B in macrophages did not lose CpG methylation upon stimulation and PD-1 expression. The linkage of TLR/NF-κB signaling to the induction of PD-1 suggests the possibility of an opportunistic advantage to microbial infections in manipulating immune inhibitory responses.


Nature Immunology | 2016

Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation

Benjamin G. Barwick; Christopher D. Scharer; Alexander P. R. Bally; Jeremy M. Boss

The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.


PLOS Genetics | 2013

Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence

Omer Gokcumen; Qihui Zhu; Lubbertus C. F. Mulder; Rebecca Iskow; Christian Austermann; Christopher D. Scharer; Towfique Raj; Jeremy M. Boss; Shamil R. Sunyaev; Alkes L. Price; Barbara E. Stranger; Viviana Simon; Charles Lee

Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajimas D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations.


Stem Cells and Development | 2012

Lectins Identify Glycan Biomarkers on Glioblastoma-Derived Cancer Stem Cells

Carol Tucker-Burden; Prasanthi Chappa; Malini Krishnamoorthy; Brian A. Gerwe; Christopher D. Scharer; Jamie Heimburg-Molinaro; Wayne Harris; Sümeyra Naz Usta; Carmen D. Eilertson; Constantinos G. Hadjipanayis; Steven L. Stice; Daniel J. Brat; Rodney J. Nash

Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Despite aggressive therapy with surgery, radiotherapy, and chemotherapy, nearly all patients succumb to disease within 2 years. Several studies have supported the presence of stem-like cells in brain tumor cultures that are CD133-positive, are capable of self-renewal, and give rise to all cell types found within the tumor, potentially perpetuating growth. CD133 is a widely accepted marker for glioma-derived cancer stem cells; however, its reliability has been questioned, creating a need for other identifiers of this biologically important subpopulation. We used a panel of 20 lectins to identify differences in glycan expression found in the glycocalyx of undifferentiated glioma-derived stem cells and differentiated cells that arise from them. Fluorescently labeled lectins that specifically recognize α-N-acetylgalactosamine (GalNAc) and α-N-acetylglucosamine (GlcNAc) differentially bound to the cell surface based on the state of cellular differentiation. GalNAc and GlcNAc were highly expressed on the surface of undifferentiated cells and showed markedly reduced expression over a 12-day duration of differentiation. Additionally, the GalNAc-recognizing lectin Dolichos biflorus agglutinin was capable of specifically selecting and sorting glioma-derived stem cell populations from an unsorted tumor stock and this subpopulation had proliferative properties similar to CD133(+) cells in vitro and also had tumor-forming capability in vivo. Our preliminary results on a single cerebellar GBM suggest that GalNAc and GlcNAc are novel biomarkers for identifying glioma-derived stem cells and can be used to isolate cancer stem cells from unsorted cell populations, thereby creating new cell lines for research or clinical testing.

Collaboration


Dive into the Christopher D. Scharer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge