Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Shaffer is active.

Publication


Featured researches published by Christopher D. Shaffer.


Mbio | 2014

A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students

Tuajuanda C. Jordan; Sandra H. Burnett; Susan Carson; Steven M. Caruso; Kari Clase; Randall J. DeJong; John J. Dennehy; Dee R. Denver; David Dunbar; Sarah C. R. Elgin; Ann M. Findley; Chris R. Gissendanner; Urszula Golebiewska; Nancy Guild; Grant A. Hartzog; Wendy H. Grillo; Gail P. Hollowell; Lee E. Hughes; Allison Johnson; Rodney A. King; Lynn Lewis; Wei Li; Frank Rosenzweig; Michael R. Rubin; Margaret S. Saha; James Sandoz; Christopher D. Shaffer; Barbara J. Taylor; Louise Temple; Edwin Vazquez

ABSTRACT Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.


CBE- Life Sciences Education | 2010

The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

Christopher D. Shaffer; Consuelo J. Alvarez; Cheryl Bailey; Daron C. Barnard; Satish C. Bhalla; Chitra Chandrasekaran; Vidya Chandrasekaran; Hui-Min Chung; Douglas R Dorer; Chunguang Du; Todd T. Eckdahl; Jeff L Poet; Donald Frohlich; Anya Goodman; Yuying Gosser; Charles Hauser; Laura L. Mays Hoopes; Diana Johnson; Christopher J. Jones; Marian Kaehler; Nighat P. Kokan; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert Moss; Jennifer L Myka; Alexis Nagengast; Robert W. Morris; Paul Overvoorde; Elizabeth Shoop

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Science | 2008

Genomics Education Partnership

David Lopatto; Consuelo J. Alvarez; Daron C. Barnard; Chitra Chandrasekaran; Hui-Min Chung; Chunguang Du; Todd T. Eckdahl; Anya Goodman; Charles Hauser; Christopher J. Jones; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert W. Morris; J. L. Myka; Alexis Nagengast; Paul Overvoorde; Jeffrey L. Poet; Kelynne E. Reed; G. Regisford; Dennis Revie; Anne G. Rosenwald; Kenneth Saville; Mary Shaw; Gary R. Skuse; Christopher D. Smith; Mary A. Smith; Mary Spratt; Joyce Stamm; Jeffrey S. Thompson

The Genomics Education Partnership offers an inclusive model for undergraduate research experiences, with students pooling their work to contribute to international databases.


Genome Biology | 2006

Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains

Elizabeth Slawson; Christopher D. Shaffer; Colin D Malone; Wilson Leung; Elmer Kellmann; Rachel B Shevchek; Carolyn A Craig; Seth M Bloom; James W Bogenpohl; James Dee; Emiko Ta Morimoto; Jenny Myoung; Andrew S. Nett; Fatih Ozsolak; Mindy E Tittiger; Andrea Zeug; Mary Lou Pardue; Jeremy Buhler; Elaine R. Mardis; Sarah C. R. Elgin

BackgroundChromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.ResultsHere we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).ConclusionCombining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.


Methods in Cell Biology | 1994

Raising Large Quantities of Drosophila for Biochemical Experiments

Christopher D. Shaffer; Joann M. Wuller; Sarah C. R. Elgin

Publisher Summary Mass cultures of Drosophila have been used in the preparation of a variety of cellular components, including RNA, proteins, DNA, and nuclei. This chapter describes the system used to rear and maintain a population of about 400,000 flies capable of producing 100 g of embryos a day. The minimal requirements for growth of the flies are simple and can be easily met. However, to obtain maximum yield of embryos, proper environmental conditions should be maintained: humidity of 70%, temperature of 25 o C, and a constant 24-hr light-dark cycle. The adult flies are fed yeast food. A single strip of yeast paste is spread on a grape plate and the whole plate is placed inside the fly cage. Although the grape plate is probably fed on lightly, its predominant purpose is to stimulate egg laying on its surface as a consequence of the attractive aroma and high surface humidity. The washed embryos can be used immediately for experimental purposes or to continue the population; alternatively, they can be frozen at –80°C for future experiments.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Heterochromatin protein 2 (HP2), a partner of HP1 in Drosophila heterochromatin

Christopher D. Shaffer; Gena E. Stephens; Brandi A. Thompson; Levi Funches; John A. Bernat; Carolyn A. Craig; Sarah C. R. Elgin

Heterochromatin protein 1 (HP1), first discovered in Drosophila melanogaster, is a highly conserved chromosomal protein implicated in both heterochromatin formation and gene silencing. We report here characterization of an HP1-interacting protein, heterochromatin protein 2 (HP2), which codistributes with HP1 in the pericentric heterochromatin. HP2 is a large protein with two major isoforms of approximately 356 and 176 kDa. The smaller isoform is produced from an alternative splicing pattern in which two exons are skipped. Both isoforms contain the domain that interacts with HP1; the larger isoform contains two AT-hook motifs. Mutations recovered in HP2 act as dominant suppressors of position effect variegation, confirming a role in heterochromatin spreading and gene silencing.


CBE- Life Sciences Education | 2014

A Course-Based Research Experience: How Benefits Change with Increased Investment in Instructional Time

Christopher D. Shaffer; Consuelo J. Alvarez; April E. Bednarski; David Dunbar; Anya Goodman; Catherine Reinke; Anne G. Rosenwald; Michael J. Wolyniak; Cheryl Bailey; Daron C. Barnard; Christopher Bazinet; Dale L. Beach; James E. J. Bedard; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Vidya Chandrasekaran; Hui-Min Chung; Kari Clase; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Heather L. Eisler; Julia A. Emerson; Amy Frary; Donald Frohlich; Yuying Gosser; Shubha Govind; Adam Haberman

While course-based research in genomics can generate both knowledge gains and a greater appreciation for how science is done, a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. Nonetheless, this is a very cost-effective way to reach larger numbers of students.


Genetics | 2010

Evolution of a distinct genomic domain in Drosophila: comparative analysis of the dot chromosome in Drosophila melanogaster and Drosophila virilis.

Wilson Leung; Christopher D. Shaffer; Taylor Cordonnier; Jeannette Wong; Michelle Sumako Itano; Elizabeth E. Slawson Tempel; Elmer Kellmann; David Michael Desruisseau; Carolyn E. Cain; Robert Carrasquillo; Tien M. Chusak; Katazyna Falkowska; Kelli D. Grim; Rui Guan; Jacquelyn Honeybourne; Sana Khan; Louis Lo; Rebecca McGaha; Jevon Plunkett; Justin M. Richner; Ryan Richt; Leah Sabin; Anita Shah; Anushree Sharma; Sonal Singhal; Fine Song; Christopher Swope; Craig B. Wilen; Jeremy Buhler; Elaine R. Mardis

The distal arm of the fourth (“dot”) chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010–1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight “wanderer” genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010–1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment.


Journal of Virology | 2014

Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes

Welkin H. Pope; Kirk R. Anders; Madison Baird; Charles A. Bowman; Michelle M. Boyle; Gregory W. Broussard; Tiffany W. Chow; Kari Clase; Shannon D. Cooper; Kathleen Cornely; Randall J. DeJong; Véronique A. Delesalle; Lisa Deng; David Dunbar; Nicholas P. Edgington; Christina M. Ferreira; Kathleen Weston Hafer; Grant A. Hartzog; J. Robert Hatherill; Lee E. Hughes; Khristina Ipapo; Gregory P. Krukonis; Christopher G Meier; Denise L. Monti; Matthew R. Olm; Shallee T. Page; Craig L. Peebles; Claire A. Rinehart; Michael R. Rubin; Daniel A. Russell

ABSTRACT Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


CBE- Life Sciences Education | 2014

A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

David Lopatto; Charles Hauser; Christopher J. Jones; Don W. Paetkau; Vidya Chandrasekaran; David Dunbar; Christy MacKinnon; Joyce Stamm; Consuelo J. Alvarez; Daron C. Barnard; James E. J. Bedard; April E. Bednarski; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Hui-Min Chung; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Julia A. Emerson; Amy Frary; Donald Frohlich; Anya Goodman; Yuying Gosser; Shubha Govind; Adam Haberman; Amy T. Hark; Arlene J. Hoogewerf; Diana Johnson

There have been numerous calls to engage students in science as science is done. A survey of 90-plus faculty members explores barriers and incentives when developing a research-based genomics course. The results indicate that a central core supporting a national experiment can help overcome local obstacles.

Collaboration


Dive into the Christopher D. Shaffer's collaboration.

Top Co-Authors

Avatar

Sarah C. R. Elgin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Wilson Leung

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anya Goodman

California Polytechnic State University

View shared research outputs
Top Co-Authors

Avatar

Chunguang Du

Montclair State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daron C. Barnard

Worcester State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-Min Chung

University of West Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge