Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Todd is active.

Publication


Featured researches published by Christopher D. Todd.


Plant Physiology | 2008

Arginase-Negative Mutants of Arabidopsis Exhibit Increased Nitric Oxide Signaling in Root Development

Teresita Flores; Christopher D. Todd; Alejandro Tovar-Méndez; Preetinder K. Dhanoa; Natalia Correa-Aragunde; Mary Elizabeth Hoyos; Disa M. Brownfield; Robert T. Mullen; Lorenzo Lamattina; Joseph C. Polacco

Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2′,7′-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2′,7′-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven β-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2∷GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5∷GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.


Plant Physiology | 2012

N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean.

Xuegui Bai; Christopher D. Todd; Radhika Desikan; Yongping Yang; Xiangyang Hu

N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H2O2), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H2O2, NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H2O2, NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H2O2 or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H2O2 or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H2O2 or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H2O2 or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H2O2- and NO-dependent cGMP signaling in mung bean seedlings.


Frontiers in Plant Science | 2015

Physiological implications of arginine metabolism in plants

Gudrun Winter; Christopher D. Todd; Maurizio Trovato; Giuseppe Forlani; Dietmar Funck

Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.


Free Radical Biology and Medicine | 2012

Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis

Xuegui Bai; Jinhui Chen; Xiangxiang Kong; Christopher D. Todd; Yongping Yang; Xiangyang Hu; De-zhu Li

Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.


Plant Molecular Biology | 2008

Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs

Disa L. Brownfield; Christopher D. Todd; Michael K. Deyholos

The detailed expression patterns of transcripts of two Arabidopsis arginase genes, ARGAH1 and ARGAH2, have not been previously described, and phylogenetic analysis suggests that they diverged independently of duplication events in other lineages. Therefore, we used β-glucuronidase reporter fusions and quantitative reverse-transcriptase PCR to analyze tissue-specific expression of ARGAH1 and ARGAH2 during Arabidopsis development, and in response to the availability of nutrients and exposure to methyl jasmonate (MeJA). We demonstrated tissue-specific transcript expression and enzyme activity in pollen for ARGAH1, but not ARGAH2. Conversely, we demonstrated MeJA-inducibility of ARGAH2, but not ARGAH1. In addition, we used microarrays to identify genes for which transcript abundance following MeJA treatment differed in wild type and ARGAH2 mutants. These ARGAH2 and MeJA responsive genes included a putative pathogenesis-related protein pathogenesis response-1 (At2g14610), and a gene of unknown function (At5g03090). Interestingly, these genes had opposite responses to the loss of ARGAH2, suggesting multiple downstream effects of arginase activity, following MeJA treatment. These results, and the variety and complexity of expression patterns of ARGAH1 and ARGAH2 transcript expression and their related reporter gene fusions that we observed point to multiple functions of arginase genes in Arabidopsis, some of which have resulted through a sub-functionalization not shared by all angiosperms.


Journal of Proteome Research | 2013

Comparative Proteome Analyses Reveal that Nitric Oxide Is an Important Signal Molecule in the Response of Rice to Aluminum Toxicity

Liming Yang; Dagang Tian; Christopher D. Todd; Yuming Luo; Xiangyang Hu

Acidic soils inhibit crop yield and reduce grain quality. One of the major contributing factors to acidic soil is the presence of soluble aluminum (Al(3+)) ions, but the mechanisms underlying plant responses to Al(3+) toxicity remain elusive. Nitric oxide (NO) is an important messenger and participates in various plant physiological responses. Here, we demonstrate that Al(3+) induced an increase of NO in rice seedlings; adding exogenous NO alleviated the Al(3+) toxicity related to rice growth and photosynthetic capacity, effects that could be reversed by suppressing NO metabolism. Comparative proteomic analyses successfully identified 92 proteins that showed differential expression after Al(3+) or NO treatment. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further analyses confirmed that NO treatment reduced Al(3+)-induced ROS and RNS toxicities by increasing the activities and protein expression of antioxidant enzymes, as well as S-nitrosoglutathione reductase (GSNOR). Suppressing GSNOR enzymatic activity aggravated Al(3+) damage to rice and increased the accumulation of RNS. NO treatment altered the expression of proteins associated with cell wall synthesis, cell division and cell structure, calcium signaling and defense responses. On the basis of these results, we propose that NO activates multiple pathways that enhance rice adaptation to Al(3+) toxicity. Such findings may be applicable to crop engineering to enhance yield and improve stress tolerance.


Planta | 2006

AtAAH encodes a protein with allantoate amidohydrolase activity from Arabidopsis thaliana

Christopher D. Todd; Joseph C. Polacco

We report the identification and cloning of an allantoate amidohydrolase (allantoate deiminase, EC 3.5.3.9) cDNA from Arabidopsis thaliana (L.) Heynh. This sequence, which we term Arabidopsis thaliana Allantoate Amidohydrolase (AtAAH), was shown to be functional by complementation of Saccharomyces cerevisiae dal2 mutants, blocked in allantoate degradation. Following transfer to a medium containing allantoin as the sole nitrogen source, Ataah T-DNA insertion mutants were severely impaired and eventually died. Ataah mutants demonstrated higher allantoate levels than wild-type plants in the presence and absence of exogenous ureides, supporting a block in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent with a function in purine turnover in Arabidopsis. To our knowledge this is the first allantoate amidohydrolase gene identified in any plant species.


Plant and Cell Physiology | 2012

Arginase Induction Represses Gall Development During Clubroot Infection in Arabidopsis

Antoine Gravot; Carole Deleu; Geoffrey Wagner; Christine Lariagon; Raphaël Lugan; Christopher D. Todd; David Wendehenne; Régine Delourme; Alain Bouchereau; Maria J. Manzanares-Dauleux

Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. Clubroot-induced accumulation of the principal amino acids in galls was not affected by the argah2 mutation. Because ARGAH2 was previously reported to control auxin response, we investigated the role of ARGAH2 in callus induction. ARGAH2 was found to be highly induced in auxin/cytokinin-triggered aseptic plant calli, and callus development was enhanced in argah2 in the absence of the pathogen. We hypothesized that arginase contributes to a negative control over clubroot symptoms, by reducing hormone-triggered cellular proliferation.


Plant Physiology and Biochemistry | 2012

Four allantoinase genes are expressed in nitrogen-fixing soybean.

Veronica A. Duran; Christopher D. Todd

Soybean (Glycine max L. [Merr]) plants export nitrogen from the nodules as ureides during symbiotic biological nitrogen fixation. Ureides also play a role as nitrogen storage compounds in the seeds and are broken down in germinating seedlings. In this work we identified four soybean genes encoding allantoinase (E.C. 3.5.2.5), an enzyme involved in both ureide production in nodules and ureide catabolism in leaves and other sink tissues. We examined ureide content, allantoinase enzyme activity and expression of these genes, which we term GmALN1 through GmALN4, in germinating seedlings and in vegetative tissues from 45 day old soybean plants. GmALN1 and GmALN2 transcripts were measured in all tissues, but similar levels of expression of GmALN3 and GmALN4 was only observed in nodules. The soybean allantoinase genes seem to have arisen through tandem gene duplication followed by a whole genome duplication. We looked for evidence of the tandem duplication in common bean (Phaseolus vulgaris L.) and present evidence that it occured sometime in the bean lineage before these two species diverged, but before soybean became a tetraploid.


PLOS ONE | 2013

A Series of TA-Based and Zero-Background Vectors for Plant Functional Genomics

Chuntao Wang; Xianlun Yin; Xiangxiang Kong; Wansha Li; Lan Ma; Xudong Sun; Yanlong Guan; Christopher D. Todd; Yongping Yang; Xiangyang Hu

With the sequencing of genomes from many organisms now complete and the development of high-throughput sequencing, life science research has entered the functional post-genome era. Therefore, deciphering the function of genes and how they interact is in greater demand. To study an unknown gene, the basic methods are either overexpression or gene knockout by creating transgenic plants, and gene construction is usually the first step. Although traditional cloning techniques using restriction enzymes or a site-specific recombination system (Gateway or Clontech cloning technology) are highly useful for efficiently transferring DNA fragments into destination plasmids, the process is time consuming and expensive. To facilitate the procedure of gene construction, we designed a TA-based cloning system in which only one step was needed to subclone a DNA fragment into vectors. Such a cloning system was developed from the pGreen binary vector, which has a minimal size and facilitates construction manipulation, combined with the negative selection marker gene ccdB, which has the advantages of eliminating the self-ligation background and directly enabling high-efficiency TA cloning technology. We previously developed a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, subcellular localization analysis and promoter activity detection. Our results show that such a system is highly efficient and serves as a high-throughput platform for transient or stable transformation in plants for functional genome research.

Collaboration


Dive into the Christopher D. Todd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangyang Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongping Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryam Nourimand

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Solmaz Irani

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Anthony Kusalik

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

José A. Andrés

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Martin A. Erlandson

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge