Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher E. Goldring is active.

Publication


Featured researches published by Christopher E. Goldring.


Biochemical Pharmacology | 2013

The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation.

Holly K. Bryan; Adedamola Olayanju; Christopher E. Goldring; B. Kevin Park

The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.


Hepatology | 2011

Circulating microRNAs as potential markers of human drug‐induced liver injury

Philip Starkey Lewis; James W. Dear; Vivien Platt; Kenneth J. Simpson; Darren G. Craig; Daniel J. Antoine; Neil French; Neeraj Dhaun; David J. Webb; Eithne Costello; John P. Neoptolemos; Jonathan G. Moggs; Christopher E. Goldring; B. Kevin Park

New biomarkers of liver injury are required in the clinic and in preclinical pharmaceutical evaluation. Previous studies demonstrate that two liver‐enriched microRNAs (miR‐122 and miR‐192) are promising biomarkers of acetaminophen‐induced acute liver injury (APAP‐ALI) in mice. We have examined these molecules, for the first time, in humans with APAP poisoning. Serum miR‐122 and miR‐192 were substantially higher in APAP‐ALI patients, compared to healthy controls (median ΔΔCt [25th, 75th percentile]) (miR‐122: 1,265 [491, 4,270] versus 12.1 [7.0, 26.9], P < 0.0001; miR‐192: 6.9 [2.0, 29.2] versus 0.44 [0.30, 0.69], P < 0.0001). A heart‐enriched miR‐1 showed no difference between APAP‐ALI patients and controls, whereas miR‐218 (brain‐enriched) was slightly higher in the APAP‐ALI cohort (0.17 [0.07, 0.50] versus 0.07 [0.04, 0.12]; P = 0.01). In chronic kidney disease (CKD) patients, miR‐122 and ‐192 were modestly higher, compared to controls (miR‐122: 32.0 [21.1, 40.9] versus 12.1 [7.0, 26.9], P = 0.006; miR‐192: 1.2 [0.74, 1.9] versus 0.44 [0.30, 0.69], P = 0.005), but miR‐122 and ‐192 were substantially higher in APAP‐ALI patients than CKD patients (miR‐122: P < 0.0001; miR‐192: P < 0.0004). miR‐122 correlated with peak ALT levels in the APAP‐ALI cohort (Pearson R = 0.46, P = 0.0005), but not with prothrombin time. miR‐122 was also raised alongside peak ALT levels in a group of patients with non‐APAP ALI. Day 1 serum miR‐122 levels were almost 2‐fold higher in APAP‐ALI patients who satisfied Kings College Criteria (KCC), compared to those who did not satisfy KCC, although this did not reach statistical significance (P = 0.15). Conclusion: This work provides the first evidence for the potential use of miRNAs as biomarkers of human drug‐induced liver injury. (HEPATOLOGY 2011;)


Nature Reviews Drug Discovery | 2011

Managing the challenge of chemically reactive metabolites in drug development

B. Kevin Park; Alan R. Boobis; Stephen E. Clarke; Christopher E. Goldring; David Jones; J. Gerry Kenna; Craig Lambert; Hugh Gerard Laverty; Dean J. Naisbitt; Sidney D. Nelson; Deborah A. Nicoll-Griffith; R. Scott Obach; Philip Routledge; Dennis A. Smith; Donald J. Tweedie; Nico P. E. Vermeulen; Dominic P. Williams; Ian D. Wilson; Thomas A. Baillie

The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This Review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.


Hepatology | 2013

Mechanistic biomarkers provide early and sensitive detection of acetaminophen‐induced acute liver injury at first presentation to hospital

Daniel J. Antoine; James W. Dear; Philip J. Starkey Lewis; Vivien Platt; Judy Coyle; Moyra Masson; Ruben H. Thanacoody; Alasdair Gray; David J. Webb; Jonathan G. Moggs; D. Nicholas Bateman; Christopher E. Goldring; B. Kevin Park

Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient‐individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen‐induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA‐122 (miR‐122; high liver specificity), high mobility group box‐1 (HMGB1; marker of necrosis), full‐length and caspase‐cleaved keratin‐18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR‐122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. Conclusion: Elevations in plasma miR‐122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision‐making, both in the treatment of ALI and the design/execution of patient‐individualized treatment strategies. (Hepatology 2013;58:777–787)


Hepatology | 2004

Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice

Christopher E. Goldring; Neil R. Kitteringham; Robert Elsby; Laura E. Randle; Y Clement; Dominic P. Williams; Michael McMahon; John D. Hayes; Ken Itoh; Masayuki Yamamoto; B. Kevin Park

The transcription factor NF‐E2‐related factor 2 (Nrf2) plays an essential role in the mammalian response to chemical and oxidative stress through induction of hepatic phase II detoxification enzymes and regulation of glutathione (GSH). Enhanced liver damage in Nrf2‐deficient mice treated with acetaminophen suggests a critical role for Nrf2; however, direct evidence for Nrf2 activation following acetaminophen exposure was previously lacking. We show that acetaminophen can initiate nuclear translocation of Nrf2 in vivo, with maximum levels reached after 1 hour, in a dose dependent manner, at doses below those causing overt liver damage. Furthermore, Nrf2 was shown to be functionally active, as assessed by the induction of epoxide hydrolase, heme oxygenase‐1, and glutamate cysteine ligase gene expression. Increased nuclear Nrf2 was found to be associated with depletion of hepatic GSH. Activation of Nrf2 is considered to involve dissociation from a cytoplasmic inhibitor, Kelch‐like ECH‐associated protein 1 (Keap1), through a redox‐sensitive mechanism involving either GSH depletion or direct chemical interaction through Michael addition. To investigate acetaminophen‐induced Nrf2 activation we compared the actions of 2 other GSH depleters, diethyl maleate (DEM) and buthionine sulphoximine (BSO), only 1 of which (DEM) can function as a Michael acceptor. For each compound, greater than 60% depletion of GSH was achieved; however, in the case of BSO, this depletion did not cause nuclear translocation of Nrf2. In conclusion, GSH depletion alone is insufficient for Nrf2 activation: a more direct interaction is required, possibly involving chemical modification of Nrf2 or Keap1, which is facilitated by the prior loss of GSH. (HEPATOLOGY 2004;39:1267–1276.)


Scientific Reports | 2016

Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

Catherine C. Bell; Delilah F. G. Hendriks; Sabrina M.L. Moro; Ewa Ellis; Joanne Walsh; Anna Renblom; Lisa Fredriksson Puigvert; Anita C. A. Dankers; Frank Jacobs; Jan Snoeys; Rowena Sison-Young; Rosalind E. Jenkins; Åsa Nordling; Souren Mkrtchian; B. Kevin Park; Neil R. Kitteringham; Christopher E. Goldring; Volker M. Lauschke; Magnus Ingelman-Sundberg

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.


Journal of Biological Chemistry | 2010

Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway.

Ian M. Copple; Adam Lister; Akua D. Obeng; Neil R. Kitteringham; Rosalind E. Jenkins; Robert Layfield; B. Foster; Christopher E. Goldring; B. Kevin Park

Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. The activity of Nrf2 is regulated by the Cul3 adaptor Keap1, yet little is known regarding mechanisms of regulation of Keap1 itself. Here, we have used immunopurification of Keap1 and mass spectrometry, in addition to immunoblotting, to identify sequestosome 1 (SQSTM1) as a cellular binding partner of Keap1. SQSTM1 serves as a scaffold in various signaling pathways and shuttles polyubiquitinated proteins to the proteasomal and lysosomal degradation machineries. Ectopic expression of SQSTM1 led to a decrease in the basal protein level of Keap1 in a panel of cells. Furthermore, RNA interference (RNAi) depletion of SQSTM1 resulted in an increase in the protein level of Keap1 and a concomitant decrease in the protein level of Nrf2 in the absence of changes in Keap1 or Nrf2 mRNA levels. The increased protein level of Keap1 in cells depleted of SQSTM1 by RNAi was linked to a decrease in its rate of degradation; the half-life of Keap1 was almost doubled by RNAi depletion of SQSTM1. The decreased level of Nrf2 in cells depleted of SQSTM1 by RNAi was associated with decreases in the mRNA levels, protein levels, and function of several Nrf2-regulated cell defense genes. SQSTM1 was dispensable for the induction of the Keap1-Nrf2 pathway, as Nrf2 activation by tert-butylhydroquinone or iodoacetamide was not affected by RNAi depletion of SQSTM1. These findings demonstrate a physical and functional interaction between Keap1 and SQSTM1 and reveal an additional layer of regulation in the Keap1-Nrf2 pathway.


Molecular Cancer | 2011

Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy

Adam Lister; Taoufik Nedjadi; Neil R. Kitteringham; Fiona Campbell; Eithne Costello; Bryony H. Lloyd; Ian M. Copple; Samantha Williams; Andrew Owen; John P. Neoptolemos; Christopher E. Goldring; B. Kevin Park

BackgroundNrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer.ResultsKeap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of NRF2 exon 2 and KEAP1 exons 2-6 in these cell lines identified no mutations in NRF2 and only synonomous mutations in KEAP1. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2), 5-flurouracil (FAMPAC), cisplatin (Suit-2 and FAMPAC) and gamma radiation (Suit-2). The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively) and matching normal benign epithelium (n = 21 cases). Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P < 0.001).ConclusionsExpression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.


Journal of Proteomics | 2010

Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver

Neil R. Kitteringham; Azman Abdullah; Joanne Walsh; Laura E. Randle; Rosalind E. Jenkins; Rowena L. Sison; Christopher E. Goldring; Helen Powell; Christopher M. Sanderson; Samantha Williams; Larry G. Higgins; Masayuki Yamamoto; John D. Hayes; B. Kevin Park

The transcription factor Nrf2 regulates expression of multiple cellular defence proteins through the antioxidant response element (ARE). Nrf2-deficient mice (Nrf2−/−) are highly susceptible to xenobiotic-mediated toxicity, but the precise molecular basis of enhanced toxicity is unknown. Oligonucleotide array studies suggest that a wide range of gene products is altered constitutively, however no equivalent proteomics analyses have been conducted. To define the range of Nrf2-regulated proteins at the constitutive level, protein expression profiling of livers from Nrf2−/− and wild type mice was conducted using both stable isotope labelling (iTRAQ) and gel electrophoresis methods. To establish a robust reproducible list of Nrf2-dependent proteins, three independent groups of mice were analysed. Correlative network analysis (MetaCore) identified two predominant groups of Nrf2-regulated proteins. As expected, one group comprised proteins involved in phase II drug metabolism, which were down-regulated in the absence of Nrf2. Surprisingly, the most profound changes were observed amongst proteins involved in the synthesis and metabolism of fatty acids and other lipids. Importantly, we show here for the first time, that the enzyme ATP-citrate lyase, responsible for acetyl-CoA production, is negatively regulated by Nrf2. This latter finding suggests that Nrf2 is a major regulator of cellular lipid disposition in the liver.


Journal of Hepatology | 2015

Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

Melissa A. Baxter; Sarah Withey; Sean Harrison; Charis-Patricia Segeritz; Fang Zhang; Rebecca Atkinson-Dell; Cliff Rowe; Dave T. Gerrard; Rowena Sison-Young; Roz Jenkins; Joanne Henry; Andrew Berry; Lisa Mohamet; Marie Best; Stephen W. Fenwick; Hassan Z. Malik; Neil R. Kitteringham; Christopher E. Goldring; Karen Hanley; Ludovic Vallier; Neil A. Hanley

Graphical abstract

Collaboration


Dive into the Christopher E. Goldring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Park

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Cliff Rowe

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

B.K. Park

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge