Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher E. Lowe is active.

Publication


Featured researches published by Christopher E. Lowe.


Nature Genetics | 2007

Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes

John A. Todd; Neil M Walker; Jason D. Cooper; Deborah J. Smyth; Kate Downes; Vincent Plagnol; Rebecca Bailey; Sergey Nejentsev; Sarah Field; Felicity Payne; Christopher E. Lowe; Jeffrey S. Szeszko; Jason P. Hafler; Lauren Zeitels; Jennie H. M. Yang; Adrian Vella; Sarah Nutland; Helen Stevens; Helen Schuilenburg; Gillian Coleman; Meeta Maisuria; William Meadows; Luc J. Smink; Barry Healy; Oliver Burren; Alex C. Lam; Nigel R Ovington; James E Allen; Ellen C. Adlem; Hin-Tak Leung

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 × 10−7 between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (Pfollow-up ≤ 1.35 × 10−9; Poverall ≤ 1.15 × 10−14), leaving eight regions with small effects or false-positive associations. We also obtained evidence for chromosome 18q22 (Poverall = 1.38 × 10−8) from a GWA study of nonsynonymous SNPs. Several regions, including 18q22 and 18p11, showed association with autoimmune thyroid disease. This study increases the number of T1D loci with compelling evidence from six to at least ten.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


Nature Genetics | 2007

Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes

Christopher E. Lowe; Jason D. Cooper; Todd M. Brusko; Neil M Walker; Deborah J. Smyth; Rebecca Bailey; Kirsi Bourget; Vincent Plagnol; Sarah Field; Mark A. Atkinson; David G. Clayton; Linda S. Wicker; John A. Todd

Genome-wide association studies are now identifying disease-associated chromosome regions. However, even after convincing replication, the localization of the causal variant(s) requires comprehensive resequencing, extensive genotyping and statistical analyses in large sample sets leading to targeted functional studies. Here, we have localized the type 1 diabetes (T1D) association in the interleukin 2 receptor alpha (IL2RA) gene region to two independent groups of SNPs, spanning overlapping regions of 14 and 40 kb, encompassing IL2RA intron 1 and the 5′ regions of IL2RA and RBM17 (odds ratio = 2.04, 95% confidence interval = 1.70–2.45; P = 1.92 × 10−28; control frequency = 0.635). Furthermore, we have associated IL2RA T1D susceptibility genotypes with lower circulating levels of the biomarker, soluble IL-2RA (P = 6.28 × 10−28), suggesting that an inherited lower immune responsiveness predisposes to T1D.


American Journal of Human Genetics | 2005

Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms

Adrian Vella; Jason D. Cooper; Christopher E. Lowe; Neil M Walker; Sarah Nutland; Barry Widmer; Richard Jones; Susan M. Ring; Wendy L. McArdle; Marcus Pembrey; David P. Strachan; David B. Dunger; Rebecca C.J. Twells; David G. Clayton; John A. Todd

As part of an ongoing search for genes associated with type 1 diabetes (T1D), a common autoimmune disease, we tested the biological candidate gene IL2RA (CD25), which encodes a subunit (IL-2R alpha) of the high-affinity interleukin-2 (IL-2) receptor complex. We employed a tag single-nucleotide polymorphism (tag SNP) approach in large T1D sample collections consisting of 7,457 cases and controls and 725 multiplex families. Tag SNPs were analyzed using a multilocus test to provide a regional test for association. We found strong statistical evidence in the case-control collection (P=6.5x10(-8)) for a T1D locus in the CD25 region of chromosome 10p15 and replicated the association in the family collection (P=7.3x10(-3); combined P=1.3x10(-10)). These results illustrate the utility of tag SNPs in a chromosome-regional test of disease association and justify future fine mapping of the causal variant in the region.


PLOS Genetics | 2009

IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production

Lisa M. Maier; Christopher E. Lowe; Jason D. Cooper; Kate Downes; David E. Anderson; Christopher Severson; Pamela M. Clark; Brian C. Healy; Neil M Walker; Cristin Aubin; Jorge R. Oksenberg; Stephen L. Hauser; A. Compston; Stephen Sawcer; Philip L. De Jager; Linda S. Wicker; John A. Todd; David A. Hafler

Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report “allelic heterogeneity” at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.


Journal of Cell Science | 2011

Adipogenesis at a glance

Christopher E. Lowe; Stephen O'Rahilly; Justin J. Rochford

The formation of adipocytes from precursor stem cells involves a complex and highly orchestrated programme of gene expression. Our understanding of the basic network of transcription factors that regulates adipogenesis has remained remarkably unchanged in recent years. However, this continues to be


Clinical Endocrinology | 2007

Association of the interleukin‐2 receptor alpha (IL‐2Rα)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs

Oliver J. Brand; Christopher E. Lowe; Joanne M. Heward; Jayne A. Franklyn; Jason D. Cooper; John A. Todd; S. C. L. Gough

Objective  A small number of immune response genes have been consistently associated with the common autoimmune conditions. Recently, a linkage disequilibrium (LD) mapping approach, using tag single nucleotide polymorphisms (SNPs), identified genetic association between type 1 diabetes (T1D) and the interleukin‐2 receptor alpha (IL‐2Rα)/CD25 gene region on chromosome 10p15. Because certain autoimmune diseases, such as autoimmune thyroid disease (AITD) and T1D cluster together in certain families, we sought to determine if the TID‐associated CD25 region was also associated with Graves’ disease (GD).


Biochemical Journal | 2010

C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis

Victoria A. Payne; Wo‑Shing Au; Christopher E. Lowe; Shaikh Mizanoor Rahman; Jacob E. Friedman; Stephen O'Rahilly; Justin J. Rochford

The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARgamma (peroxisome-proliferator-activated receptor gamma), the generation of an endogenous PPARgamma ligand and the expression of several genes critical for lipid biosynthesis. Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized. We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPbeta (CCAAT/enhancer-binding protein beta) targets. Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPbeta LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPbeta or C/EBPdelta significantly impaired early SREBP1c induction. Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPbeta and C/EBPdelta bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression. Using cells in which C/EBPalpha expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPalpha replaces C/EBPbeta and C/EBPdelta as a regulator of SREBP1c expression in maturing adipocytes. These results provide novel insight into the induction of SREBP1c expression during adipogenesis. Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity.


Nature Genetics | 2005

Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes

Deborah J Smyth; Joanna M M Howson; Christopher E. Lowe; Neil M Walker; Alex C. Lam; Sarah Nutland; Jayne Hutchings; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; Cristian Guja; Constantin Ionescu-Tirgoviste; Dag E. Undlien; Kjersti S. Rønningen; David B. Savage; David B. Dunger; Rebecca C.J. Twells; Wendy L. McArdle; David P. Strachan; John A. Todd

Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes


Genes and Immunity | 2004

Cost-effective analysis of candidate genes using htSNPs: a staged approach

Christopher E. Lowe; Jason D. Cooper; Juliet Chapman; Bryan J. Barratt; Rebecca C.J. Twells; E A Green; David A. Savage; Cristian Guja; Constantin Ionescu-Tirgoviste; E Tuomilehto-Wolf; Jaakko Tuomilehto; John A. Todd; David G. Clayton

We have previously shown that the selection of haplotype tag single nucleotide polymorphisms (htSNPs) and their statistical analysis in a multi-locus transmission/disequilibrium test (TDT) results in a more cost-effective genotyping strategy in disease association studies of genes by minimising redundancy due to linkage disequilibrium between SNPs. Further savings can be achieved by the use of a two-stage genotyping strategy. This approach is illustrated here in conjunction with the multi-locus TDT in determining whether common alleles of the immune regulatory genes RANK and its ligand TRANCE (RANKL) are associated with type 1 diabetes (T1D). A saving of approximately 75% of potential genotyping reactions could be made with minimal loss of power. There was little evidence from our analysis for association between the TRANCE and RANK genes and T1D in the populations tested.

Collaboration


Dive into the Christopher E. Lowe's collaboration.

Top Co-Authors

Avatar

John A. Todd

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felicity Payne

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex C. Lam

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge