Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher E. Pelloski is active.

Publication


Featured researches published by Christopher E. Pelloski.


Cancer Cell | 2010

Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma

Houtan Noushmehr; Daniel J. Weisenberger; Kristin Diefes; Heidi S. Phillips; Kanan Pujara; Benjamin P. Berman; Fei Pan; Christopher E. Pelloski; Erik P. Sulman; Krishna P. Bhat; Roel G.W. Verhaak; Katherine A. Hoadley; D. Neil Hayes; Charles M. Perou; Heather K. Schmidt; Li Ding; Richard Wilson; David Van Den Berg; Hui Shen; Henrik Bengtsson; Pierre Neuvial; Leslie Cope; Jonathan D. Buckley; James G. Herman; Stephen B. Baylin; Peter W. Laird; Kenneth D. Aldape

We have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds.


Neuro-oncology | 2010

A multigene predictor of outcome in glioblastoma

Howard Colman; Li Zhang; Erik P. Sulman; J. Matthew McDonald; Nasrin Latif Shooshtari; Andreana L. Rivera; Sonya Popoff; Catherine L. Nutt; David N. Louis; J. Gregory Cairncross; Mark R. Gilbert; Heidi S. Phillips; Minesh P. Mehta; Arnab Chakravarti; Christopher E. Pelloski; Krishna P. Bhat; Burt G. Feuerstein; Robert B. Jenkins; Kenneth D. Aldape

Only a subset of patients with newly diagnosed glioblastoma (GBM) exhibit a response to standard therapy. To date, a biomarker panel with predictive power to distinguish treatment sensitive from treatment refractory GBM tumors does not exist. An analysis was performed using GBM microarray data from 4 independent data sets. An examination of the genes consistently associated with patient outcome, revealed a consensus 38-gene survival set. Worse outcome was associated with increased expression of genes associated with mesenchymal differentiation and angiogenesis. Application to formalin fixed-paraffin embedded (FFPE) samples using real-time reverse-transcriptase polymerase chain reaction assays resulted in a 9-gene subset which appeared robust in these samples. This 9-gene set was then validated in an additional independent sample set. Multivariate analysis confirmed that the 9-gene set was an independent predictor of outcome after adjusting for clinical factors and methylation of the methyl-guanine methyltransferase promoter. The 9-gene profile was also positively associated with markers of glioma stem-like cells, including CD133 and nestin. In sum, a multigene predictor of outcome in glioblastoma was identified which appears applicable to routinely processed FFPE samples. The profile has potential clinical application both for optimization of therapy in GBM and for the identification of novel therapies targeting tumors refractory to standard therapy.


Cancer Research | 2006

FoxM1B Is Overexpressed in Human Glioblastomas and Critically Regulates the Tumorigenicity of Glioma Cells

Mingguang Liu; Bingbing Dai; Shin Hyuk Kang; Kechen Ban; Feng Ju Huang; Frederick F. Lang; Kenneth D. Aldape; Tongxin Xie; Christopher E. Pelloski; Keping Xie; Raymond Sawaya; Suyun Huang

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in malignant glioma. However, the functional importance of this factor in human glioma is not known. In the present study, we found that FoxM1B was the predominant FoxM1 isoform expressed in human glioma but not in normal brain tissue. The level of FoxM1 protein expression in human glioma tissues was directly correlated with the glioma grade. The level of FoxM1 protein expression in human glioblastoma tissues was inversely correlated with patient survival. Enforced FoxM1B expression caused SW1783 and Hs683 glioma cells, which do not form tumor xenografts, to regain tumorigenicity in nude mouse model systems. Moreover, gliomas that arose from FoxM1B-transfected anaplastic astrocytoma SW1783 cells displayed glioblastoma multiforme phenotypes. Inhibition of FoxM1 expression in glioblastoma U-87MG cells suppressed their anchorage-independent growth in vitro and tumorigenicity in vivo. Furthermore, we found that FoxM1 regulates the expression of Skp2 protein, which is known to promote degradation of the cell cycle regulator p27(Kip1). These results showed that FoxM1 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity. Therefore, FoxM1 might be a new potential target of therapy for human malignant gliomas.


Journal of Clinical Oncology | 2007

Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma

Christopher E. Pelloski; Karla V. Ballman; Alfred F. Furth; Li Zhang; E. Lin; Erik P. Sulman; Krishna Bhat; J. Matthew McDonald; W. K. Alfred Yung; Howard Colman; Shiao Y. Woo; Amy B. Heimberger; Dima Suki; Michael D. Prados; Susan M. Chang; Fred G. Barker; Jan C. Buckner; C. David James; Kenneth D. Aldape

PURPOSE The clinical significance of epidermal growth factor receptor variant III (EGFRvIII) expression in glioblastoma multiforme (GBM) and its relationship with other key molecular markers are not clear. We sought to evaluate the clinical significance of GBM subtypes as defined by EGFRvIII status. PATIENTS AND METHODS The expression of EGFRvIII was assessed by immunohistochemistry in 649 patients with newly diagnosed GBM. These data were then examined in conjunction with the expression of phospho-intermediates (in a subset of these patients) of downstream AKT and Ras pathways and YKL-40 as well as with known clinical risk factors, including the Radiation Therapy Oncology Groups recursive partitioning analysis (RTOG-RPA) class. RESULTS The RTOG-RPA class was highly predictive of survival in EGFRvIII-negative patients but much less predictive in EGFRvIII-positive patients. These findings were seen in both an initial test set (n = 268) and a larger validation set (n = 381). Similarly, activation of the AKT/MAPK pathways and YKL-40 positivity were predictive of poor outcome in EGFRvIII-negative patients but not in EGFRvIII-positive patients. Pair-wise combinations of markers identified EGFRvIII and YKL-40 as prognostically important. In particular, outcome in patients with EGFRvIII-negative/YKL-40-negative tumors was significantly better than the outcome in patients with the other three combinations of these two markers. CONCLUSION Established prognostic factors in GBM were not predictive of outcome in the EGFRvIII-positive subset, although this requires confirmation in independent data sets. GBMs negative for both EGFRvIII and YKL-40 show less aggressive behavior.


Neuro-oncology | 2010

MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma

Andreana L. Rivera; Christopher E. Pelloski; Mark R. Gilbert; Howard Colman; Clarissa De La Cruz; Erik P. Sulman; B. Nebiyou Bekele; Kenneth D. Aldape

Hypermethylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) gene has been shown to be associated with improved outcome in glioblastoma (GBM) and may be a predictive marker of sensitivity to alkylating agents. However, the predictive utility of this marker has not been rigorously tested with regard to sensitivity to other therapies, namely radiation. To address this issue, we assessed MGMT methylation status in a cohort of patients with GBM who underwent radiation treatment but did not receive chemotherapy as a component of adjuvant treatment. Formalin-fixed, paraffin-embedded tumor samples from 225 patients with newly diagnosed GBM were analyzed via methylation-specific, quantitative real-time polymerase chain reaction following bisulfite treatment on isolated DNA to assess MGMT promoter methylation status. In patients who received radiotherapy alone following resection, methylation of the MGMT promoter correlated with an improved response to radiotherapy. Unmethylated tumors were twice as likely to progress during radiation treatment. The median time interval between resection and tumor progression of unmethylated tumors was also nearly half that of methylated tumors. Promoter methylation was also found to confer improved overall survival in patients who did not receive adjuvant alkylating chemotherapy. Multivariable analysis demonstrated that methylation status was independent of age, Karnofsky performance score, and extent of resection as a predictor of time to progression and overall survival. Our data suggest that MGMT promoter methylation appears to be a predictive biomarker of radiation response. Since this biomarker has also been shown to predict response to alkylating agents, perhaps MGMT promoter methylation represents a general, favorable prognostic factor in GBM.


Clinical Cancer Research | 2006

Prognostic Associations of Activated Mitogen-Activated Protein Kinase and Akt Pathways in Glioblastoma

Christopher E. Pelloski; E. Lin; Li Zhang; W. K. Alfred Yung; Howard Colman; Juinn Lin Liu; S.Y. Woo; Amy B. Heimberger; Dima Suki; Michael D. Prados; Susan M. Chang; Fredrick G. Barker; Gregory N. Fuller; Kenneth D. Aldape

Purpose: Activation of mitogen-activated protein kinase (MAPK) and members of the Akt pathway have been shown to promote cell proliferation, survival, and resistance to radiation. This study was conducted to determine whether any of these markers are associated with survival time and response to radiation in glioblastoma. Experimental Design: The expression of phosphorylated (p-)Akt, mammalian target of rapamycin (p-mTOR), p-p70S6K, and p-MAPK were assessed by immunohistochemical staining in 268 cases of newly diagnosed glioblastoma. YKL-40, a prognostic marker previously examined in these tumors, was also included in the analysis. Expression data were tested for correlations with response to radiation therapy in 131 subtotally resected cases and overall survival (in all cases). Results were validated in an analysis of 60 patients enrolled in clinical trials at a second institution. Results: Elevated p-MAPK expression was most strongly associated with poor response to radiotherapy, a finding corroborated in the validation cohort. For survival, higher expressions of p-mTOR, p-p70S6K, and p-MAPK were associated with worse outcome (all P < 0.03). YKL-40 expression was associated with the expressions of p-MAPK, p-mTOR, and p-p70S6K (all P < 0.02), with a trend toward association with p-Akt expression (P = 0.095). When known clinical variables were added to a multivariate analysis, only age, Karnofsky performance score, and p-MAPK expression emerged as independent prognostic factors. Conclusions: p-MAPK and activated members of the Akt pathway are markers of outcome in glioblastoma. Elevated expression of p-MAPK is associated with increased radiation resistance and represents an independent prognostic factor in these tumors.


Clinical Cancer Research | 2005

YKL-40 Expression is Associated with Poorer Response to Radiation and Shorter Overall Survival in Glioblastoma

Christopher E. Pelloski; Anita Mahajan; Moshe H. Maor; Eric L. Chang; Shiao Y. Woo; Mark R. Gilbert; Howard Colman; Helen Yang; Alicia Ledoux; Hilary Blair; Sandra M. Passe; Robert B. Jenkins; Kenneth D. Aldape

Purpose: YKL-40 is a secreted protein that has been reported to be overexpressed in epithelial cancers and gliomas, although its function is unknown. Previous data in a smaller sample set suggested that YKL-40 was a marker associated with a poorer clinical outcome and a genetically defined subgroup of glioblastoma. Here we test these findings in a larger series of patients with glioblastoma, and in particular, determine if tumor YKL-40 expression is associated with radiation response. Experimental Design: Patients (n = 147) with subtotal resections were studied for imaging-assessed changes in tumor size in serial studies following radiation therapy. An additional set (n = 140) of glioblastoma patients who underwent a gross-total resection was tested to validate the survival association and extend them to patients with minimal residual disease. Results: In the subtotal resection group, higher YKL-40 expression was significantly associated with poorer radiation response, shorter time to progression and shorter overall survival. The association of higher YKL-40 expression with poorer survival was validated in the gross-total resection group. In multivariate analysis with both groups combined (n = 287), YKL-40 was an independent predictor of survival after adjusting for patient age, performance status, and extent of resection. YKL-40 expression was also compared with genetically defined subsets of glioblastoma by assessing epidermal growth factor receptor amplification and loss at chromosome 10q, two of the common recurring aberrations in these tumors, using fluorescent in situ hybridization. YKL-40 was significantly associated with 10q loss. Conclusions: The findings implicate YKL-40 as an important marker of therapeutic response and genetic subtype in glioblastomas and suggest that it may play an oncogenic role in these tumors.


The American Journal of Surgical Pathology | 2006

Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating astrocytomas.

Howard Colman; Caterina Giannini; Li Huang; Javier Gonzalez; Kenneth R. Hess; Janet M. Bruner; Gregory N. Fuller; Lauren A. Langford; Christopher E. Pelloski; Joann Aaron; Peter C. Burger; Kenneth D. Aldape

Distinguishing between grade II and grade III diffuse astrocytomas is important both for prognosis and for treatment decision-making. However, current methods for distinguishing between grades based on proliferative potential are suboptimal, making identification of clear cutoffs difficult. In this study, we compared the results from immunohistochemical staining for phospho-histone H3 (pHH3), a specific marker of cells undergoing mitosis, with standard mitotic counts (number of mitoses/10 high-power fields) and MIB-1 labeling index values for assessing proliferative activity. We tested the relationship between pHH3 staining and tumor grade and prognosis in a retrospective series of grade II and III infiltrating astrocytomas from a single institution. The pHH3 index (per 1000 cells), MIB-1 index (per 1000 cells), and number of mitoses per 10 high-power fields were determined for each of 103 cases of grade II and III diffuse astrocytomas from patients with clinical follow-up. pHH3 staining was found to be a simple and reliable method for identifying mitotic figures, allowing a true mitotic index to be determined. The pHH3 mitotic index was significantly associated both with the standard mitotic count and with the MIB-1 index. Univariate analyses revealed that all 3 measurements of proliferation were significantly associated with survival. However, the pHH3 mitotic index accounted for a larger proportion of variability in survival than standard mitotic count or MIB-1/Ki-67 labeling index. After adjusting for age, extent of resection, and performance score, the pHH3 mitotic index remained an independent predictor of survival. Thus, pHH3 staining provides a simple and reliable method for quantifying proliferative potential and for the stratification of patients with diffuse astrocytomas into typical grade II and III groups. These results also suggest that pHH3 staining may be a useful method in other neoplasms in which accurate determination of proliferation potential is relevant to tumor grading or clinical treatment decision-making.


Journal of Neurosurgery | 2009

Stereotactic radiosurgery for metastatic brain tumors: a comprehensive review of complications: Clinical article

Brian J. Williams; Dima Suki; Benjamin D. Fox; Christopher E. Pelloski; Marcos Vinicius Calfat Maldaun; Raymond Sawaya; Frederick F. Lang; Ganesh Rao

OBJECT Stereotactic radiosurgery (SRS) is commonly used to treat brain metastases. Complications associated with this treatment are underreported. The authors reviewed a large series of patients who underwent SRS for brain metastases to identify complications and factors predicting their occurrence. METHODS Prospectively collected clinical data from 273 patients undergoing SRS for 1 or 2 brain metastases at The University of Texas M. D. Anderson Cancer Center between June 1993 and December 2004 were reviewed. Patients who had received prior treatment for their tumor, including whole-brain radiation, SRS, or surgery, were excluded from the study. Data on adverse neurological and nonneurological outcomes following treatment were collected. RESULTS Three hundred sixteen lesions were treated. Complications were associated with 127 (40%) of 316 treated lesions. New neurological complications were associated with 101 (32%) of 316 lesions. The onset of seizure was the most common complication, occurring in 41 (13%) of 316 SRS cases. On multivariate analysis, progressing primary cancer (hazard ratio [HR]=2.4, 95% CI 1.6-3.6, p<0.001), tumor location in eloquent cortex (HR=2.3, 95% CI 1.6-3.4, p<0.001), and lower (<15 Gy) SRS dose (HR=2.1, 95% CI 1.1-4.2, p=0.04) were significantly associated with new complications. On multivariate analysis, a tumor location in the eloquent cortex (HR=2.5, 95% CI 1.6-3.8, p<0.001) and progressing primary cancer (HR=1.6, 95% CI 1.1-2.5, p=0.03) were significantly associated with new neurological complications. CONCLUSIONS The authors showed that new neurological and nonneurological complications were associated with 40% of SRS treatments for brain metastases. Patients with lesions in functional brain regions have a significantly increased risk of treatment-related complications.


Pediatric Blood & Cancer | 2008

Multimodality treatment of osteosarcoma: Radiation in a high-risk cohort

Anita Mahajan; Shiao Y. Woo; David Kornguth; Dennis P.M. Hughes; Winston W. Huh; Eric L. Chang; Cynthia E. Herzog; Christopher E. Pelloski; Pete Anderson

Chemotherapy during radiation and/or bone‐seeking radioisotope therapy (153‐samarium; 1 mCi/kg) during radiation may improve osteosarcoma cancer control.

Collaboration


Dive into the Christopher E. Pelloski's collaboration.

Top Co-Authors

Avatar

Kenneth D. Aldape

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Howard Colman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Erik P. Sulman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric L. Chang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mark R. Gilbert

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dima Suki

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S.Y. Woo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shiao Y. Woo

University of Louisville

View shared research outputs
Researchain Logo
Decentralizing Knowledge