Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher E. Pope is active.

Publication


Featured researches published by Christopher E. Pope.


Clinical Infectious Diseases | 2013

Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis

Daniel J. Wolter; Julia Emerson; Sharon McNamara; Anne M. Buccat; Xuan Qin; Elizabeth Cochrane; Laura S. Houston; Geraint B. Rogers; Peter Marsh; Karandeep Prehar; Christopher E. Pope; Marcella Blackledge; Eric Déziel; Kenneth D. Bruce; Bonnie W. Ramsey; Ronald L. Gibson; Jane L. Burns; Lucas R. Hoffman

BACKGROUND Cystic fibrosis (CF) lung disease is associated with diverse bacteria chronically infecting the airways. Slow-growing, antibiotic-resistant mutants of Staphylococcus aureus known as small-colony variants (SCVs) have been isolated from respiratory secretions from European adults and children with CF lung disease using specific but infrequently used culture techniques. Staphylococcus aureus SCVs can be selected either by exposure to specific antibiotics or by growth with another CF pathogen, Pseudomonas aeruginosa. We sought to determine the prevalence, clinical significance, and likely mechanisms of selection of S. aureus SCVs among a US cohort of children with CF. METHODS We performed a 2-year study of 100 children with CF using culture techniques sensitive for S. aureus SCVs, and evaluated associations with clinical characteristics using multivariable regression models. RESULTS Staphylococcus aureus SCV infection was detected among 24% of participants and was significantly associated with a greater drop in lung function during the study (P = .007, adjusted for age and lung function at enrollment). This association persisted after adjusting for infection with other known CF pathogens, including P. aeruginosa and methicillin-resistant S. aureus. Evidence indicated that S. aureus SCVs were likely selected in vivo by treatment with the antibiotic trimethoprim-sulfamethoxazole and possibly by coinfection with P. aeruginosa. CONCLUSIONS Infection with SCV S. aureus was independently associated with worse CF respiratory outcomes in this pediatric cohort. As many clinical microbiology laboratories do not specifically detect S. aureus SCVs, validation and extension of these findings would require widespread changes in the usual laboratory and clinical approaches to these bacteria.


Annals of the American Thoracic Society | 2014

Three Clinically Distinct Chronic Pediatric Airway Infections Share a Common Core Microbiota

Christopher J. van der Gast; Leah Cuthbertson; Geraint B. Rogers; Christopher E. Pope; Robyn L. Marsh; Gregory J. Redding; Kenneth D. Bruce; Anne B. Chang; Lucas R. Hoffman

RATIONALE DNA-based microbiological studies are moving beyond studying healthy human microbiota to investigate diverse infectious diseases, including chronic respiratory infections, such as those in the airways of people with cystic fibrosis (CF) and non-CF bronchiectasis. The species identified in the respiratory secretion microbiota from such patients can be classified into those that are common and abundant among similar subjects (core) versus those that are infrequent and rare (satellite). This categorization provides a vital foundation for investigating disease pathogenesis and improving therapy. However, whether the core microbiota of people with different respiratory diseases, which are traditionally associated with specific culturable pathogens, are unique or shared with other chronic infections of the lower airways is not well studied. Little is also known about how these chronic infection microbiota change from childhood to adulthood. OBJECTIVES We sought to compare the core microbiota in respiratory specimens from children and adults with different chronic lung infections. METHODS We used bacterial 16S rRNA gene pyrosequencing, phylogenetic analysis, and ecological statistical tools to compare the core microbiota in respiratory samples from three cohorts of symptomatic children with clinically distinct airway diseases (protracted bacterial bronchitis, bronchiectasis, CF), and from four healthy children. We then compared the core pediatric respiratory microbiota with those in samples from adults with bronchiectasis and CF. MEASUREMENTS AND MAIN RESULTS All three pediatric disease cohorts shared strikingly similar core respiratory microbiota that differed from adult CF and bronchiectasis microbiota. The most common species in pediatric disease cohort samples were also detected in those from healthy children. The adult CF and bronchiectasis microbiota also differed from each other, suggesting common early infection airway microbiota that diverge by adulthood. The shared core pediatric microbiota included both traditional pathogens and many species not routinely identified by standard culture. CONCLUSIONS Our results indicate that these clinically distinct chronic airway infections share common early core microbiota, which are likely shaped by natural aspiration and impaired clearance of the same airway microbes, but that disease-specific characteristics select for divergent microbiota by adulthood. Longitudinal and interventional studies will be required to define the relationships between microbiota, treatments, and disease progression.


The ISME Journal | 2013

Reducing bias in bacterial community analysis of lower respiratory infections

Geraint B. Rogers; Leah Cuthbertson; Lucas R. Hoffman; Peter A.C. Wing; Christopher E. Pope; Danny A.P. Hooftman; Andrew K. Lilley; Anna Oliver; Mary P. Carroll; Kenneth D. Bruce; Christopher J. van der Gast

High-throughput pyrosequencing and quantitative PCR (Q-PCR) analysis offer greatly improved accuracy and depth of characterisation of lower respiratory infections. However, such approaches suffer from an inability to distinguish between DNA derived from viable and non-viable bacteria. This discrimination represents an important step in characterising microbial communities, particularly in contexts with poor clearance of material or high antimicrobial stress, as non-viable bacteria and extracellular DNA can contribute significantly to analyses. Pre-treatment of samples with propidium monoazide (PMA) is an effective approach to non-viable cell exclusion (NVCE). However, the impact of NVCE on microbial community characteristics (abundance, diversity, composition and structure) is not known. Here, adult cystic fibrosis (CF) sputum samples were used as a paradigm. The effects of PMA treatment on CF sputum bacterial community characteristics, as analysed by pyrosequencing and enumeration by species-specific (Pseudomonas aeruginosa) and total bacterial Q-PCR, were assessed. At the local community level, abundances of both total bacteria and of P. aeruginosa were significantly lower in PMA-treated sample portions. Meta-analysis indicated no overall significant differences in diversity; however, PMA treatment resulted in a significant alteration in local community membership in all cases. In contrast, at the metacommunity level, PMA treatment resulted in an increase in community evenness, driven by an increase in diversity, predominately representing rare community members. Importantly, PMA treatment facilitated the detection of both recognised and emerging CF pathogens, significantly influencing ‘core’ and ‘satellite’ taxa group membership. Our findings suggest failure to implement NVCE may result in skewed bacterial community analyses.


American Journal of Respiratory and Critical Care Medicine | 2014

Pseudomonas aeruginosa In Vitro Phenotypes Distinguish Cystic Fibrosis Infection Stages and Outcomes

Nicole Mayer-Hamblett; Margaret Rosenfeld; Ronald L. Gibson; Bonnie W. Ramsey; Hemantha D. Kulasekara; George Z. Retsch-Bogart; Wayne J. Morgan; Daniel J. Wolter; Christopher E. Pope; Laura S. Houston; Bridget R. Kulasekara; Umer Khan; Jane L. Burns; Samuel I. Miller; Lucas R. Hoffman

RATIONALE Pseudomonas aeruginosa undergoes phenotypic changes during cystic fibrosis (CF) lung infection. Although mucoidy is traditionally associated with transition to chronic infection, we hypothesized that additional in vitro phenotypes correlate with this transition and contribute to disease. OBJECTIVES To characterize the relationships between in vitro P. aeruginosa phenotypes, infection stage, and clinical outcomes. METHODS A total of 649 children with CF and newly identified P. aeruginosa were followed for a median 5.4 years during which a total of 2,594 P. aeruginosa isolates were collected. Twenty-six in vitro bacterial phenotypes were assessed among the isolates, including measures of motility, exoproduct production, colony morphology, growth, and metabolism. MEASUREMENTS AND MAIN RESULTS P. aeruginosa phenotypes present at the time of culture were associated with both stage of infection (new onset, intermittent, or chronic) and the primary clinical outcome, occurrence of a pulmonary exacerbation (PE) in the subsequent 2 years. Two in vitro P. aeruginosa phenotypes best distinguished infection stages: pyoverdine production (31% of new-onset cultures, 48% of intermittent, 69% of chronic) and reduced protease production (31%, 39%, and 65%, respectively). The best P. aeruginosa phenotypic predictors of subsequent occurrence of a PE were mucoidy (odds ratio, 1.75; 95% confidence interval, 1.19-2.57) and reduced twitching motility (odds ratio, 1.43; 95% confidence interval, 1.11-1.84). CONCLUSIONS In this large epidemiologic study of CF P. aeruginosa adaptation, P. aeruginosa isolates exhibited two in vitro phenotypes that best distinguished early and later infection stages. Among the many phenotypes tested, mucoidy and reduced twitching best predicted subsequent PE. These phenotypes indicate potentially useful prognostic markers of transition to chronic infection and advancing lung disease.


American Journal of Respiratory and Critical Care Medicine | 2017

Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections

Katherine B. Hisert; Sonya L. Heltshe; Christopher E. Pope; Peter Jorth; Xia Wu; Rachael M. Edwards; Matthew Radey; Frank J. Accurso; Daniel J. Wolter; Gordon Cooke; Ryan J. Adam; Suzanne Carter; B. Grogan; Janice L. Launspach; Seamas C. Donnelly; Charles G. Gallagher; James E. Bruce; David A. Stoltz; Michael Welsh; Lucas R. Hoffman; Edward F. McKone; Pradeep K. Singh

Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D‐CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. Objectives: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. Methods: We studied 12 subjects with G551D‐CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Measurements and Main Results: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Conclusions: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D‐CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR‐targeting treatments.


Clinical Infectious Diseases | 2014

Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis

Lucas R. Hoffman; Christopher E. Pope; Hillary S. Hayden; Sonya L. Heltshe; Roie Levy; Sharon McNamara; Michael A. Jacobs; Laurence Rohmer; Matthew Radey; Bonnie W. Ramsey; M. Brittnacher; Elhanan Borenstein; Samuel I. Miller

Cystic fibrosis gastrointestinal disease includes nutrient malabsorption and intestinal inflammation. We show that the abundances of Escherichia coli in fecal microbiota were significantly higher in young children with cystic fibrosis than in controls and correlated with fecal measures of nutrient malabsorption and inflammation, suggesting that E. coli could contribute to cystic fibrosis gastrointestinal dysfunction.


Clinical Infectious Diseases | 2014

Pseudomonas aeruginosa Phenotypes Associated with Eradication Failure in Children with Cystic Fibrosis

Nicole Mayer-Hamblett; Bonnie W. Ramsey; Hemantha D. Kulasekara; Daniel J. Wolter; Laura S. Houston; Christopher E. Pope; Bridget R. Kulasekara; Catherine R. Armbruster; Jane L. Burns; George Z. Retsch-Bogart; Margaret Rosenfeld; Ronald L. Gibson; Samuel I. Miller; Umer Khan; Lucas R. Hoffman

BACKGROUND Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually results in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different phenotypes in vitro that could serve as useful prognostic markers, but the relative relationships between these phenotypes and failure to eradicate P. aeruginosa have not been well characterized. METHODS We measured 22 easily assayed in vitro phenotypes among the baseline P. aeruginosa isolates collected from 194 participants in the 18-month EPIC clinical trial, which assessed outcomes after antibiotic eradication therapy for newly identified P. aeruginosa. We then evaluated the associations between these baseline isolate phenotypes and subsequent outcomes during the trial, including failure to eradicate after antipseudomonal therapy, emergence of mucoidy, and occurrence of an exacerbation. RESULTS Baseline P. aeruginosa isolates frequently exhibited phenotypes thought to represent chronic adaptation, including mucoidy. Wrinkly colony surface and irregular colony edges were both associated with increased risk of eradication failure (hazard ratios [95% confidence intervals], 1.99 [1.03-3.83] and 2.14 [1.32-3.47], respectively). Phenotypes reflecting defective quorum sensing were significantly associated with subsequent mucoidy, but no phenotype was significantly associated with subsequent exacerbations during the trial. CONCLUSIONS Pseudomonas aeruginosa phenotypes commonly considered to reflect chronic adaptation were observed frequently among isolates at early detection. We found that 2 easily assayed colony phenotypes were associated with failure to eradicate after antipseudomonal therapy, both of which have been previously associated with altered biofilm formation and defective quorum sensing.


Mbio | 2016

LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa

John B Feltner; Daniel J. Wolter; Christopher E. Pope; Marie-Christine Groleau; Nicole E. Smalley; E. Peter Greenberg; Nicole Mayer-Hamblett; Jane L. Burns; Eric Déziel; Lucas R. Hoffman; Ajai A. Dandekar

ABSTRACT Chronic Pseudomonas aeruginosa infections cause significant morbidity in patients with cystic fibrosis (CF). Over years to decades, P. aeruginosa adapts genetically as it establishes chronic lung infections. Nonsynonymous mutations in lasR, the quorum-sensing (QS) master regulator, are common in CF. In laboratory strains of P. aeruginosa, LasR activates transcription of dozens of genes, including that for another QS regulator, RhlR. Despite the frequency with which lasR coding variants have been reported to occur in P. aeruginosa CF isolates, little is known about their consequences for QS. We sequenced lasR from 2,583 P. aeruginosa CF isolates. The lasR sequences of 580 isolates (22%) coded for polypeptides that differed from the conserved LasR polypeptides of well-studied laboratory strains. This collection included 173 unique lasR coding variants, 116 of which were either missense or nonsense mutations. We studied 31 of these variants. About one-sixth of the variant LasR proteins were functional, including 3 with nonsense mutations, and in some LasR-null isolates, genes that are LasR dependent in laboratory strains were nonetheless expressed. Furthermore, about half of the LasR-null isolates retained RhlR activity. Therefore, in some CF isolates the QS hierarchy is altered such that RhlR quorum sensing is independent of LasR regulation. Our analysis challenges the view that QS-silent P. aeruginosa is selected during the course of a chronic CF lung infection. Rather, some lasR sequence variants retain functionality, and many employ an alternate QS strategy involving RhlR. IMPORTANCE Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa, quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants. Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa, quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants.


American Journal of Pathology | 2014

Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets.

Xingshen Sun; Alicia K. Olivier; Yaling Yi; Christopher E. Pope; Hillary S. Hayden; Bo Liang; Hongshu Sui; Weihong Zhou; Kyle R. Hager; Yulong Zhang; Xiaoming Liu; Ziying Yan; John T. Fisher; Nicholas W. Keiser; Yi Song; Scott R. Tyler; J. Adam Goeken; Joann M. Kinyon; Matthew Radey; Danielle Fligg; Xiaoyan Wang; Weiliang Xie; Thomas J. Lynch; Paul M. Kaminsky; M. Brittnacher; Samuel I. Miller; Kalpaj R. Parekh; David K. Meyerholz; Lucas R. Hoffman; Timothy S. Frana

Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 μg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.


Scientific Reports | 2016

Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis

Ohad Manor; Roie Levy; Christopher E. Pope; Hillary S. Hayden; M. Brittnacher; Rogan Carr; Matthew Radey; Kyle R. Hager; Sonya L. Heltshe; Bonnie W. Ramsey; Samuel I. Miller; Lucas R. Hoffman; Elhanan Borenstein

Cystic fibrosis (CF) results in inflammation, malabsorption of fats and other nutrients, and obstruction in the gastrointestinal (GI) tract, yet the mechanisms linking these disease manifestations to microbiome composition remain largely unexplored. Here we used metagenomic analysis to systematically characterize fecal microbiomes of children with and without CF, demonstrating marked CF-associated taxonomic dysbiosis and functional imbalance. We further showed that these taxonomic and functional shifts were especially pronounced in young children with CF and diminished with age. Importantly, the resulting dysbiotic microbiomes had significantly altered capacities for lipid metabolism, including decreased capacity for overall fatty acid biosynthesis and increased capacity for degrading anti-inflammatory short-chain fatty acids. Notably, these functional differences correlated with fecal measures of fat malabsorption and inflammation. Combined, these results suggest that enteric fat abundance selects for pro-inflammatory GI microbiota in young children with CF, offering novel strategies for improving the health of children with CF-associated fat malabsorption.

Collaboration


Dive into the Christopher E. Pope's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane L. Burns

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge