Christopher G. Daniel
Bucknell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher G. Daniel.
American Mineralogist | 2005
Joseph M. Pyle; Frank S. Spear; David A. Wark; Christopher G. Daniel; Lara C. Storm
Abstract We examine the factors controlling accuracy and precision of monazite microprobe ages, using a JEOL 733 Superprobe equipped with 4 PET crystals, and both 1-atm gas flow Ar X-ray detectors and sealed Xe X-ray detectors. Multiple PET crystals allow for simultaneous determination of Pb concentration on up to 3 detectors, and the effects of different detector gases on spectral form can be addressed. Numerous factors in the X-ray production, detection, and counting sequence affect spectral form, including: choice of accelerating voltage, changes in d-spacing of the diffraction crystal, use of X-ray collimation slits, and type of detector gas. The energy difference between ArKα X-rays and XeLα X-rays results in, for 1-atm Ar detectors, escape peaks of second-order LREE L line X-rays that cannot be filtered using differential mode PHA. The second-order LREE energies are passed to the counter and produce, for a 140 mm Rowland circle, several problematic interferences in the Pb region of a monazite wavelength-dispersive (WD) spectrum. WD monazite spectra produced with Xe detectors are free from second-order LREE interferences in the Pb region; escape peaks of the secondorder LREE are filterable with differential mode PHA if Xe detectors are employed. Silicon, Ca, Y, Ce, P, Th, U, and Pb (2 spectrometers) are measured as part of the monazite microprobe dating protocol; ±2σ variations in elements fixed for ZAF corrections do not affect the age outside of analytical uncertainty. ThMα, UMβ, and PbMα are the analyzed lines of the age components. Corrections for interference of ThMζ1,2 and YLγ2,3 on PbMα are significant, but can be done precisely, and reduce the precision of theMα analysis by a trivially small amount. ThMγ, M3-N4, and M5-P3 interferences on UMβ can be corrected, as well, but ThM5 and M4 absorption edges in high-Th samples make estimation of UMβ background problematic. Background fits for UMβ peaks show that linear vs. exponential fits for UMβ do not, in general, produce statistically significant differences in microprobe ages. However, linear vs. exponential background fits for PbMα peaks do produce significantly different ages, most likely because of (1) low Pb concentrations relative to U; (2) ThMζ1 interference on backgrounds between ThMζ1 and PbMβ; and (3) SKα and Kβ interference in S-bearing monazite. For 6-min analyses (3 min peak, 3 min background) at 25 keV and 200 nA, 1σ Pb precisions are approximately 3.4% at 1700 ppm and 9.5% at 750 ppm; at 15 keV, precision decreases by roughly 25% of the 25 keV value. These precisions are constant for fixed current, analysis time, and concentration, but the statistical precision of distinct populations of monazite grains (domains) is a function of the total number of analyses within the domain. Instrumental errors (current measurement, dead time, pulse shift, d-spacing change) add 1.10% to random errors, but errors caused by pulse shift and d-spacing changes can be accounted for and corrected. Decreasing accelerating voltage from 25 to 15 keV decreases ZAF correction factors by as much as 50% relative, but replicate age analyses of Trebilcock monazite at 15 and 25 keV are statistically indistinguishable. Grain orientation, miscalculated background intensity, uncorrected interferences, and surface effects also introduce systematic errors. Accurate background interpolation and interference correction reduces systematic error to approximately 5.20% in addition to random (counting) error. Microprobe ages (~420 Ma) and 208Pb/232Th SIMS ages (~430 Ma) of monazite from Vermont are in agreement to within ~10 m.y. The discrepancy between U-Th-total Pb microprobe ages and 208Pb/232Th ages is removed when the high background measurement for PbMα is shifted to the short-wavelength side of PbMβ, removing a possible ThMζ1 interference.
Geological Society of America Bulletin | 2013
Christopher G. Daniel; Lily S. Pfeifer; James V. Jones; Christopher R.M. McFarlane
Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 ± 10 Ma, 1699 ± 3 Ma, and 1450 ± 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 ± 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and ~60 grains (~25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490–1450 Ma deposition followed by tectonic burial, regional Al 2 SiO 5 triple-point metamorphism, and ductile deformation at depths of 12–18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.
Geosphere | 2011
James V. Jones; Christopher G. Daniel; Dirk Frei; Kristine Thrane
Detrital zircon ages from quartzite and metaconglomerate in the Tusas and Picuris Mountains in northern New Mexico reveal new information about age and provenance trends within a >1000 km 2 Proterozoic sedimentary basin and provide a critical test of regional correlations. Samples from the Paleoproterozoic Vadito and Hondo groups are dominated by a single detrital zircon population with age probability peaks that range from 1765 to 1704 Ma. Minor Archean and ca. 1850 Ma age probability peaks were also recognized in some samples. Close correspondence between detrital zircon ages and the age of surrounding basement rocks indicates predominately local sources, and we interpret systematic shifts in peak ages with stratigraphic position to represent changes in local sources through time. Similarities of age spectra support previous correlation of stratigraphic units between discontinuous exposures of the Hondo Group. We interpret that these supracrustal rocks were deposited in a single basin that we refer to as the Pilar basin. Two samples of the Marquenas Formation, a pebble to boulder conglomerate previously correlated with the ca. 1700 Ma Vadito Group, are dominated by Paleoproterozoic detrital zircon with age probability peaks at 1707 and 1715 Ma in the middle and upper units, respectively. Unlike the Vadito and Hondo group samples, the Marquenas Formation also contains abundant ca. 1700–1600 Ma zircon derived from Mazatzal-aged sources to the south and Mesoproterozoic zircon with age probability peaks at 1479 and 1457 Ma. Weighted averages of 1477 ± 13 Ma and 1453 ± 10 Ma for the youngest detrital zircon in the middle and upper Marquenas Formation provide new maximum depositional age constraints, indicating that it is not part of the Vadito Group. The minimum age is not well constrained but is interpreted to be ca. 1435 Ma on the basis of the timing of regional metamorphism and deformation previously documented in the Picuris Mountains. These data represent the first evidence of sedimentation directly associated with ca. 1.4 Ga regional metamorphism, plutonism, and deformation in the southwestern United States and provide an important new constraint on the tectonic evolution of southern Laurentia during this time.
Lithosphere | 2015
James V. Jones; Christopher G. Daniel; Michael F. Doe
Mesoproterozoic sedimentary basins in western North America provide key constraints on pre-Rodinia craton positions and interactions along the western rifted margin of Laurentia. One such basin, the Belt-Purcell basin, extends from southern Idaho into southern British Columbia and contains a >18-km-thick succession of siliciclastic sediment deposited ca. 1.47−1.40 Ga. The ca. 1.47−1.45 Ga lower part of the succession contains abundant distinctive non-Laurentian 1.61−1.50 Ga detrital zircon populations derived from exotic cratonic sources. Contemporaneous metasedimentary successions in the southwestern United States—the Trampas and Yankee Joe basins in Arizona and New Mexico—also contain abundant 1.61−1.50 Ga detrital zircons. Similarities in depositional age and distinctive non-Laurentian detrital zircon populations suggest that both the Belt-Purcell and southwestern U.S. successions record sedimentary and tectonic linkages between western Laurentia and one or more cratons including North Australia, South Australia, and (or) East Antarctica. At ca. 1.45 Ga, both the Belt-Purcell and southwest U.S. successions underwent major sedimentological changes, with a pronounced shift to Laurentian provenance and the disappearance of 1.61−1.50 Ga detrital zircon. Upper Belt-Purcell strata contain strongly unimodal ca. 1.73 Ga detrital zircon age populations that match the detrital zircon signature of Paleoproterozoic metasedimentary rocks of the Yavapai Province to the south and southeast. We propose that the shift at ca. 1.45 Ga records the onset of orogenesis in southern Laurentia coeval with rifting along its northwestern margin. Bedrock uplift associated with orogenesis and widespread, coeval magmatism caused extensive exhumation and erosion of the Yavapai Province ca. 1.45−1.36 Ga, providing a voluminous and areally extensive sediment source—with suitable zircon ages—during upper Belt deposition. This model provides a comprehensive and integrated view of the Mesoproterozoic tectonic evolution of western Laurentia and its position within the supercontinent Columbia as it evolved into Rodinia.
The Journal of Geology | 2012
Katherine R. Barnhart; Pamela J. Walsh; Lincoln S. Hollister; Christopher G. Daniel; Christopher L. Andronicos
An outstanding problem in understanding the late Proterozoic tectonic assembly of the southwest is identifying the tectonic setting associated with regional metamorphism at 1.4 Ga. Both isobaric heating and cooling, and counterclockwise looping PT paths are proposed for this time. We present a study of the Proterozoic metamorphic and deformation history of the Cerro Colorado area, southern Tusas Mountains, New Mexico, which shows that the metamorphism in this area records near-isothermal decompression from 6 to 4 kbar at ca. 1.4 Ga. We do not see evidence for isobaric heating at this time. Decompression from peak pressures is recorded by the reaction , with a negative slope in PT space; the reaction , which is nearly horizontal in PT space; and partial to total pseudomorphing of kyanite by sillimanite during the main phase of deformation. The clearest reaction texture indicating decompression near peak metamorphic temperature is the replacement of garnet by clots of sillimanite, which are surrounded by halos of biotite. The sillimanite clots, most without relict garnet in the cores and with highly variable aspect ratios, are aligned. They define a lineation that formed with the dominant foliation. An inverted metamorphic gradient is locally defined by sillimanite-garnet schists (625°C) structurally above staurolite-garnet schists (550°C) and implies ductile thrusting during the main phase of deformation. The exhumation that led to the recorded decompression was likely in response to crustal thickening due to ductile thrusting and subsequent denudation.
Journal of Petrology | 2006
Christopher G. Daniel; Joseph M. Pyle
Field Guides | 2013
Christopher G. Daniel; James V. Jones; Christopher L. Andronicos; Mary Beth Gray
Archive | 2018
Michael F. Doe; Mf Doe Geoscience Llc; Christopher G. Daniel; James V. Jones
Archive | 2018
Christopher G. Daniel; Sara V. Stotter; James V. Jones; Michael F. Doe; Christopher R.M. McFarlane
Chemical Geology | 2018
Peter B. Sak; Mariah Murphy; Lin Ma; Jérôme Gaillardet; Elizabeth M. Herndon; Susan L. Brantley; Christopher G. Daniel