Christopher G. Elliott
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher G. Elliott.
Journal of Cell Science | 2012
Christopher G. Elliott; Jian Wang; Xiaolei Guo; Shi wen Xu; Mark Eastwood; Jianjun Guan; Andrew Leask; Simon J. Conway; Douglas W. Hamilton
The matricellular protein periostin is expressed in the skin. Although periostin has been hypothesized to contribute to dermal homeostasis and repair, this has not been directly tested. To assess the contribution of periostin to dermal healing, 6 mm full-thickness excisional wounds were created in the skin of periostin-knockout and wild-type, sex-matched control mice. In wild-type mice, periostin was potently induced 5–7 days after wounding. In the absence of periostin, day 7 wounds showed a significant reduction in myofibroblasts, as visualized by expression of α-smooth muscle actin (α-SMA) within the granulation tissue. Delivery of recombinant human periostin by electrospun collagen scaffolds restored α-SMA expression. Isolated wild-type and knockout dermal fibroblasts did not differ in in vitro assays of adhesion or migration; however, in 3D culture, periostin-knockout fibroblasts showed a significantly reduced ability to contract a collagen matrix, and adopted a dendritic phenotype. Recombinant periostin restored the defects in cell morphology and matrix contraction displayed by periostin-deficient fibroblasts in a manner that was sensitive to a neutralizing anti-β1-integrin and to the FAK and Src inhibitor PP2. We propose that periostin promotes wound contraction by facilitating myofibroblast differentiation and contraction.
Journal of Cell Communication and Signaling | 2010
Hong Ming Zhou; Jian Wang; Christopher G. Elliott; Weiyan Wen; Douglas W. Hamilton; Simon J. Conway
Differentiation of fibroblasts to myofibroblasts and collagen fibrillogenesis are two processes essential for normal cutaneous development and repair, but their misregulation also underlies skin-associated fibrosis. Periostin is a matricellular protein normally expressed in adult skin, but its role in skin organogenesis, incisional wound healing and skin pathology has yet to be investigated in any depth. Using C57/BL6 mouse skin as model, we first investigated periostin protein and mRNA spatiotemporal expression and distribution during development and after incisional wounding. Secondarily we assessed whether periostin is expressed in human skin pathologies, including keloid and hypertrophic scars, psoriasis and atopic dermatitis. During development, periostin is expressed in the dermis, basement membrane and hair follicles from embryonic through neonatal stages and in the dermis and hair follicle only in adult. In situ hybridization demonstrated that dermal fibroblasts and basal keratinocytes express periostin mRNA. After incisional wounding, periostin becomes re-expressed in the basement membrane within the dermal-epidermal junction at the wound edge re-establishing the embryonic deposition pattern present in the adult. Analysis of periostin expression in human pathologies demonstrated that it is over-expressed in keloid and hypertrophic scars, atopic dermatitis, but is largely absent from sites of inflammation and inflammatory conditions such as psoriasis. Furthermore, in vitro we demonstrated that periostin is a transforming growth factor beta 1 inducible gene in human dermal fibroblasts. We conclude that periostin is an important ECM component during development, in wound healing and is strongly associated with pathological skin remodeling.Summary: Periostin is a fibrogenic protein that mediates fibroblast differentiation and extracellular matrix synthesis. Here, we show that periostin is dynamically and temporally expressed during skin development, is induced by TGF-β1 in vitro and is significantly upregulated during wound repair as well as cutaneous pathologies.
Biomacromolecules | 2012
Xiaolei Guo; Christopher G. Elliott; Zhenqing Li; Yanyi Xu; Douglas W. Hamilton; Jianjun Guan
Fast angiogenesis in 3D fibrous constructs that mimic the morphology of the extracellular matrix remains challenging due to limited porosity in the densely packed constructs. We investigated whether mimicking the in vivo chemotaxis microenvironment for native blood vessel formation would stimulate angiogenesis in the fibrous constructs. The chemotaxis microenvironment was created by introducing 3D angiogenic growth factor gradients into the constructs. We have developed a technique that can quickly fabricate (∼40 min) such 3D gradients by simultaneously electrospinning polycaprolactone (PCL) fibers, encapsulating gradient amount of bFGF (stabilized by heparin) into poly(lactide-co-glycolide) (PLGA) microspheres, and electrospraying the microspheres into PCL fibers. Gradient formation was confirmed by fluorescence microscopy. Gradients with different steepnesses were obtained by modulating the initial concentration of the bFGF solution. All of the constructs were able to sustainedly release bioactive bFGF over a 28 day period. The release kinetics was dependent on the bFGF loading and steepness of the gradient. In vitro cell migration study demonstrated that bFGF gradients significantly increased the depth of cell migration. To assess the efficacy of bFGF gradients in inducing angiogenesis, we implanted constructs subcutaneously using mouse model. bFGF gradients significantly promoted cell penetration into the constructs. After 10 days of implantation, a high density of mature blood vessels (positive to both CD31 and α-SMA) were formed in the constructs. Vessel density was increased with the increase in steepness of the bFGF gradient. These gradient constructs may have potential to engineer vascularized tissues for various applications.
Journal of Cell Communication and Signaling | 2011
Christopher G. Elliott; Douglas W. Hamilton
Chronic wounds are characterized by inadequate matrix synthesis, no re-epithelialization, infection and ultimately no wound resolution. In contrast, fibrosis is characterized by overproduction of matrix and excess matrix contraction. As research in the fields of chronic wounds and fibrosis surges forward, important parallels can now be drawn between the dysfunctions in fibrotic diseases and the needs of chronic wounds. These parallels exist at both the macroscopic level and at the molecular level. Thus in finding the individual factors responsible for the progression of fibrotic diseases, we may identify new therapeutic targets for the resolution of chronic wounds. The aim of this review is to discuss how recent advances in fibrosis research have found a home in the treatment of chronic wounds and to highlight the benefits that can be obtained for chronic wound treatments by employing a translational approach to molecules identified in fibrosis research.
PLOS ONE | 2013
Paul Prowse; Christopher G. Elliott; Jeff Hutter; Douglas W. Hamilton
Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.
Matrix Biology | 2015
Christopher G. Elliott; Thomas L. Forbes; Andrew Leask; Douglas W. Hamilton
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.
Histology and Histopathology | 2014
Daniel Pepe; Christopher G. Elliott; Thomas L. Forbes; Douglas W. Hamilton
The matricellular protein galectin-3 (Gal-3) is upregulated in excisional skin repair in rats where it has been shown to modulate the inflammatory phase of repair. Recent research into kidney pathology has implicated Gal-3 as a receptor for advanced glycation end products (AGE), resulting in the binding and clearance of these molecules. AGEs are thought to contribute to defective skin repair in diabetic patients as well as a result of the normal aging process. However, the distribution and localization of Gal-3 and AGEs has never been performed in human chronic skin wound tissue. Using immunohistochemistry, the localization of Gal-3 and AGEs in tissue isolated from chronic wounds and non-involved skin from the same patient was investigated. Of the 16 patients from which tissue was isolated, 13 had type II diabetes, one had type I diabetes and 2 patients without diabetes were also examined. In non-involved dermis, Gal-3 was detected strongly in the epidermis and in the vasculature. However, at the wound edge and in the wound bed, the level of Gal-3 labelling was greatly reduced in both the epidermis and vasculature. Labelling of serial sections for Gal-3 and AGE demonstrated that where Gal-3 immunoreactivity is reduced in the epidermis and vasculature, there is a concomitant increase in the level of AGE staining. Interestingly, similar labelling patterns were evident in diabetic and non-diabetic patients. The results from our study demonstrate an inverse correlation between Gal-3 and AGEs localization, suggesting that Gal-3 may protect against accumulation of AGEs in wound healing.
Cell Adhesion & Migration | 2012
Christopher G. Elliott; Shawna S. Kim; Douglas W. Hamilton
In the past year, three papers have been published exploring the role of the matricellular protein periostin in excisional skin repair. These papers all show a delay in wound closure and the kinetics of this delay are strikingly similar across the three reports. The similarities between these papers end, however, when each investigates the mechanism through which periostin influences skin repair. Three proposed mechanisms have been identified: (1) myofibroblast differentiation, (2) keratinocyte proliferation and (3) fibroblast proliferation and migration. The aim of this commentary is to compare and contrast the three studies performed to date in an attempt to decipher the role of periostin in the repair of full-thickness skin wounds.
Research and Reports in Biochemistry | 2015
John T. Walker; Shawna S. Kim; Sarah Michelsons; Kendal Creber; Christopher G. Elliott; Andrew Leask; Douglas W. Hamilton
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php Research and Reports in Biochemistry 2015:5 73–88 Research and Reports in Biochemistry Dovepress
Journal of Investigative Dermatology | 2016
John T. Walker; Christopher G. Elliott; Thomas L. Forbes; Douglas W. Hamilton