Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher G. Hubert is active.

Publication


Featured researches published by Christopher G. Hubert.


Cancer Research | 2016

A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo.

Christopher G. Hubert; Maricruz Rivera; Lisa C. Spangler; Qiulian Wu; Stephen C. Mack; Briana Prager; Marta Couce; Roger E. McLendon; Andrew E. Sloan; Jeremy N. Rich

Many cancers feature cellular hierarchies that are driven by tumor-initiating cancer stem cells (CSC) and rely on complex interactions with the tumor microenvironment. Standard cell culture conditions fail to recapitulate the original tumor architecture or microenvironmental gradients and are not designed to retain the cellular heterogeneity of parental tumors. Here, we describe a three-dimensional culture system that supports the long-term growth and expansion of tumor organoids derived directly from glioblastoma specimens, including patient-derived primary cultures, xenografts, genetically engineered glioma models, or patient samples. Organoids derived from multiple regions of patient tumors retain selective tumorigenic potential. Furthermore, organoids could be established directly from brain metastases not typically amenable to in vitro culture. Once formed, tumor organoids grew for months and displayed regional heterogeneity with a rapidly dividing outer region of SOX2(+), OLIG2(+), and TLX(+) cells surrounding a hypoxic core of primarily non-stem senescent cells and diffuse, quiescent CSCs. Notably, non-stem cells within organoids were sensitive to radiotherapy, whereas adjacent CSCs were radioresistant. Orthotopic transplantation of patient-derived organoids resulted in tumors displaying histologic features, including single-cell invasiveness, that were more representative of the parental tumor compared with those formed from patient-derived sphere cultures. In conclusion, we present a new ex vivo model in which phenotypically diverse stem and non-stem glioblastoma cell populations can be simultaneously cultured to explore new facets of microenvironmental influences and CSC biology. Cancer Res; 76(8); 2465-77. ©2016 AACR.


Cancer Research | 2015

Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance

Valery Adorno-Cruz; Golam Kibria; Xia Liu; Mary R. Doherty; Damian J. Junk; Dongyin Guan; Christopher G. Hubert; Monica Venere; Erin E. Mulkearns-Hubert; Maksim Sinyuk; Alvaro G. Alvarado; Arnold I. Caplan; Jeremy N. Rich; Stanton L. Gerson; Justin D. Lathia; Huiping Liu

With the goal to remove the roots of cancer, eliminate metastatic seeds, and overcome therapy resistance, the 2014 inaugural International Cancer Stem Cell (CSC) Conference at Cleveland, OH, convened together over 320 investigators, including 55 invited world-class speakers, 25 short oral presenters, and 100 poster presenters, to gain an in-depth understanding of CSCs and explore therapeutic opportunities targeting CSCs. The meeting enabled intriguing discussions on several topics including: genetics and epigenetics; cancer origin and evolution; microenvironment and exosomes; metabolism and inflammation; metastasis and therapy resistance; single cell and heterogeneity; plasticity and reprogramming; as well as other new concepts. Reports of clinical trials targeting CSCs emphasized the urgent need for strategically designing combinational CSC-targeting therapies against cancer.


Cell Reports | 2015

Differential Connexin Function Enhances Self-Renewal in Glioblastoma

Masahiro Hitomi; Loic P. Deleyrolle; Erin E. Mulkearns-Hubert; Awad Jarrar; Meizhang Li; Maksim Sinyuk; Balint Otvos; Sylvain Brunet; William A. Flavahan; Christopher G. Hubert; Winston Goan; James S. Hale; Alvaro G. Alvarado; Ao Zhang; Mark Rohaus; Muna Oli; Vinata Vedam-Mai; Jeff M. Fortin; Hunter S. Futch; Benjamin Griffith; Qiulian Wu; Chun hong Xia; Xiaohua Gong; Manmeet S. Ahluwalia; Jeremy N. Rich; Brent A. Reynolds; Justin D. Lathia

SUMMARY The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Nature | 2017

Transcription elongation factors represent in vivo cancer dependencies in glioblastoma

Tyler E. Miller; Brian B. Liau; Lisa C Wallace; Andrew R. Morton; Qi Xie; Deobrat Dixit; Daniel C. Factor; Leo Kim; James J. Morrow; Qiulian Wu; Stephen C. Mack; Christopher G. Hubert; Shawn M. Gillespie; William A. Flavahan; Thomas Hoffmann; Rohit Thummalapalli; Michael T. Hemann; Patrick J. Paddison; Craig Horbinski; Johannes Zuber; Peter C. Scacheri; Bradley E. Bernstein; Paul J. Tesar; Jeremy N. Rich

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause–release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause–release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of ‘cancer dependencies’ not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Nature Neuroscience | 2016

An epigenetic gateway to brain tumor cell identity.

Stephen C. Mack; Christopher G. Hubert; Tyler E. Miller; Michael D. Taylor; Jeremy N. Rich

Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks and disruption of chromatin structure. In this Review, we describe the convergence of genetic, metabolic and microenvironmental factors on mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state and neoplastic transformation, as well as addressing the potential to exploit these alterations as new therapeutic strategies for the treatment of brain cancer.


Journal of Experimental Medicine | 2017

Zika virus has oncolytic activity against glioblastoma stem cells

Zhe Zhu; Matthew J. Gorman; Lisa D. McKenzie; Jiani N. Chai; Christopher G. Hubert; Briana Prager; Estefania Fernandez; Justin M. Richner; Rong Zhang; Chao Shan; Eric Tycksen; Xiuxing Wang; Pei Yong Shi; Michael S. Diamond; Jeremy N. Rich; Milan G. Chheda

Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients.


Nature Neuroscience | 2017

Purine synthesis promotes maintenance of brain tumor initiating cells in glioma

Xiuxing Wang; Kailin Yang; Qi Xie; Qiulian Wu; Stephen C. Mack; Yu Shi; Leo Kim; Briana Prager; William A. Flavahan; Xiaojing Liu; Meromit Singer; Christopher G. Hubert; Tyler E. Miller; Wenchao Zhou; Zhi Huang; Xiaoguang Fang; Aviv Regev; Mario L. Suvà; Tae Hyun Hwang; Jason W. Locasale; Shideng Bao; Jeremy N. Rich

Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.


Nature | 2017

Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling

Stephen C. Mack; Kristian W. Pajtler; Lukas Chavez; Konstantin Okonechnikov; Kelsey C. Bertrand; Xiuxing Wang; Serap Erkek; Alexander J. Federation; Anne Song; Christine Lee; Xin Wang; Laura McDonald; James J. Morrow; Alina Saiakhova; Patrick Sin-Chan; Qiulian Wu; Kulandaimanuvel Antony Michaelraj; Tyler E. Miller; Christopher G. Hubert; Marina Ryzhova; Livia Garzia; Laura K. Donovan; Stephen M. Dombrowski; Daniel C. Factor; Betty Luu; Claudia L.L. Valentim; Ryan C. Gimple; Andrew R. Morton; Leo Kim; Briana Prager

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


JCI insight | 2017

Nicotinamide metabolism regulates glioblastoma stem cell maintenance

Jinkyu Jung; Leo Kim; Xiuxing Wang; Qiulian Wu; Tanwarat Sanvoranart; Christopher G. Hubert; Briana Prager; Lisa C Wallace; Xun Jin; Stephen C. Mack; Jeremy N. Rich

Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation.


Cancer Research | 2017

MYC-regulated mevalonate metabolism maintains brain tumor–initiating cells

Xiuxing Wang; Zhi Huang; Qiulian Wu; Briana Prager; Stephen C. Mack; Kailin Yang; Leo Kim; Ryan C. Gimple; Yu Shi; Sisi Lai; Qi Xie; Tyler E. Miller; Christopher G. Hubert; Anne Song; Zhen Dong; Wenchao Zhou; Xiaoguang Fang; Zhe Zhu; Vaidehi Mahadev; Shideng Bao; Jeremy N. Rich

Metabolic dysregulation drives tumor initiation in a subset of glioblastomas harboring isocitrate dehydrogenase (IDH) mutations, but metabolic alterations in glioblastomas with wild-type IDH are poorly understood. MYC promotes metabolic reprogramming in cancer, but targeting MYC has proven notoriously challenging. Here, we link metabolic dysregulation in patient-derived brain tumor-initiating cells (BTIC) to a nexus between MYC and mevalonate signaling, which can be inhibited by statin or 6-fluoromevalonate treatment. BTICs preferentially express mevalonate pathway enzymes, which we find regulated by novel MYC-binding sites, validating an additional transcriptional activation role of MYC in cancer metabolism. Targeting mevalonate activity attenuated RAS-ERK-dependent BTIC growth and self-renewal. In turn, mevalonate created a positive feed-forward loop to activate MYC signaling via induction of miR-33b. Collectively, our results argue that MYC mediates its oncogenic effects in part by altering mevalonate metabolism in glioma cells, suggesting a therapeutic strategy in this setting. Cancer Res; 77(18); 4947-60. ©2017 AACR.

Collaboration


Dive into the Christopher G. Hubert's collaboration.

Top Co-Authors

Avatar

Jeremy N. Rich

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. Mack

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Briana Prager

Cleveland Clinic Lerner College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Leo Kim

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tyler E. Miller

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kailin Yang

Cleveland Clinic Lerner College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge