Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher G. Mathew is active.

Publication


Featured researches published by Christopher G. Mathew.


Nature Genetics | 2008

Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease

Jeffrey C. Barrett; Sarah Hansoul; Dan L. Nicolae; Judy H. Cho; Richard H. Duerr; John D. Rioux; Steven R. Brant; Mark S. Silverberg; Kent D. Taylor; M. Michael Barmada; Alain Bitton; Themistocles Dassopoulos; Lisa W. Datta; Todd Green; Anne M. Griffiths; Emily O. Kistner; Miguel Regueiro; Jerome I. Rotter; L. Philip Schumm; A. Hillary Steinhart; Stephan R. Targan; Ramnik J. Xavier; Cécile Libioulle; Cynthia Sandor; Mark Lathrop; Jacques Belaiche; Olivier Dewit; Ivo Gut; Simon Heath; Debby Laukens

Several risk factors for Crohns disease have been identified in recent genome-wide association studies. To advance gene discovery further, we combined data from three studies on Crohns disease (a total of 3,230 cases and 4,829 controls) and carried out replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 additional loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1 and ITLN1. The expanded molecular understanding of the basis of this disease offers promise for informed therapeutic development.


Nature Genetics | 2010

Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci

Andre Franke; Dermot McGovern; Jeffrey C. Barrett; Kai Wang; Graham L. Radford-Smith; Tariq Ahmad; Charlie W. Lees; Tobias Balschun; James C. Lee; Rebecca L. Roberts; Carl A. Anderson; Joshua C. Bis; Suzanne Bumpstead; David Ellinghaus; Eleonora M. Festen; Michel Georges; Todd Green; Talin Haritunians; Luke Jostins; Anna Latiano; Christopher G. Mathew; Grant W. Montgomery; Natalie J. Prescott; Soumya Raychaudhuri; Jerome I. Rotter; Philip Schumm; Yashoda Sharma; Lisa A. Simms; Kent D. Taylor; David C. Whiteman

We undertook a meta-analysis of six Crohns disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10−8). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohns disease.


Nature Genetics | 2007

A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1.

Jochen Hampe; Andre Franke; Philip Rosenstiel; Andreas Till; Markus Teuber; Klaus Huse; Mario Albrecht; Gabriele Mayr; Francisco M. De La Vega; Jason Briggs; Simone Günther; Natalie J. Prescott; Clive M. Onnie; Robert Häsler; Bence Sipos; Ulrich R. Fölsch; Thomas Lengauer; Matthias Platzer; Christopher G. Mathew; Michael Krawczak; Stefan Schreiber

We performed a genome-wide association study of 19,779 nonsynonymous SNPs in 735 individuals with Crohn disease and 368 controls. A total of 7,159 of these SNPs were informative. We followed up on all 72 SNPs with P ≤ 0.01 with an allele-based disease association test in 380 independent Crohn disease trios, 498 Crohn disease singleton cases and 1,032 controls. Disease association of rs2241880 in the autophagy-related 16-like 1 gene (ATG16L1) was replicated in these samples (P = 4.0 × 10−8) and confirmed in a UK case-control sample (P = 0.0004). By haplotype and regression analysis, we found that marker rs2241880, a coding SNP (T300A), carries virtually all the disease risk exerted by the ATG16L1 locus. The ATG16L1 gene encodes a protein in the autophagosome pathway that processes intracellular bacteria. We found a statistically significant interaction with respect to Crohn disease risk between rs2241880 and the established CARD15 susceptibility variants (P = 0.039). Together with the lack of association between rs2241880 and ulcerative colitis (P > 0.4), these data suggest that the underlying biological process may be specific to Crohn disease.


The Lancet | 2001

Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations

Jochen Hampe; Andrew Cuthbert; Peter J. P. Croucher; Muddassar Mirza; Silvia Mascheretti; Sheila Fisher; Henning Frenzel; Kathy King; Anja Hasselmeyer; A Macpherson; Stephen Bridger; Sander J. H. van Deventer; Alastair Forbes; Susanna Nikolaus; J E Lennard-Jones; Ulrich R. Foelsch; Michael Krawczak; Cathryn M. Lewis; Stefan Schreiber; Christopher G. Mathew

Background Genetic predisposition to inflammatory bowel disease (IBD) has been shown by epidemiological and linkage studies. Genetic linkage of IBD to chromosome 16 has been previously observed and replicated in independent populations. The recently identified NOD2 gene is a good positional and functional candidate gene since it is located in the region of linkage on chromosome 16q12, and activates nuclear factor (NF) kappaB in response to bacterial lipopolysaccharides. Methods We sequenced the coding region of the NOD2 gene and genotyped an insertion polymorphism affecting the leucine-rich region of the protein product in 512 individuals with IBD from 309 German or British families, 369 German trios (ie, German patients with sporadic IBD and their unaffected parents), and 272 normal controls. We then tested for association with Crohns disease and ulcerative colitis. Findings Family-based association analyses were consistently positive in 95 British and 99 German affected sibling pairs with Crohns disease (combined p<0.0001); the association was confirmed in the 304 German trios with Crohns disease. No association was seen in the 115 sibling pairs and 65 trios with ulcerative colitis. The genotype-specific disease risks conferred by heterozygous and homozygous mutant genotypes were 2.6 (95% CI 1.5-4.5) and 42.1 (4.3-infinity), respectively. Interpretation The insertion mutation in the NOD2 gene confers a substantially increased susceptibility to Crohns disease but not to ulcerative colitis.


Nature Genetics | 2007

Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility.

Miles Parkes; Jeffrey C. Barrett; Natalie J. Prescott; Mark Tremelling; Carl A. Anderson; Sheila Fisher; Roland G. Roberts; Elaine R. Nimmo; Fraser Cummings; Dianne Soars; Hazel E. Drummond; Charlie W. Lees; Saud A Khawaja; Richard Bagnall; D. A. Burke; Ce Todhunter; Tariq Ahmad; Clive M. Onnie; Wendy L. McArdle; David P. Strachan; Graeme Bethel; Claire Bryan; Cathryn M. Lewis; Panos Deloukas; Alastair Forbes; Jeremy Sanderson; Derek P. Jewell; Jack Satsangi; John C. Mansfield; Lon R. Cardon

A genome-wide association scan in individuals with Crohns disease by the Wellcome Trust Case Control Consortium detected strong association at four novel loci. We tested 37 SNPs from these and other loci for association in an independent case-control sample. We obtained replication for the autophagy-inducing IRGM gene on chromosome 5q33.1 (replication P = 6.6 × 10−4, combined P = 2.1 × 10−10) and for nine other loci, including NKX2-3, PTPN2 and gene deserts on chromosomes 1q and 5p13.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


Nature Genetics | 2007

Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer

Sarah Reid; Detlev Schindler; Helmut Hanenberg; Karen Barker; Sandra Hanks; Reinhard Kalb; Kornelia Neveling; Patrick Kelly; Sheila Seal; Marcel Freund; Melanie Wurm; Sat Dev Batish; Francis P. Lach; Sevgi Yetgin; Heidemarie Neitzel; Hany Ariffin; Marc Tischkowitz; Christopher G. Mathew; Arleen D. Auerbach; Nazneen Rahman

PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.


Nature Genetics | 2008

Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility

Andre Franke; Tobias Balschun; Tom H. Karlsen; Jurgita Sventoraityte; Susanna Nikolaus; Gabriele Mayr; Francisco S. Domingues; Mario Albrecht; Michael Nothnagel; David Ellinghaus; Christian Sina; Clive M. Onnie; Rinse K. Weersma; Pieter Stokkers; Cisca Wijmenga; Maria Gazouli; David P. Strachan; Wendy L. McArdle; Severine Vermeire; Paul Rutgeerts; Philip Rosenstiel; Michael Krawczak; Morten H. Vatn; Christopher G. Mathew; Stefan Schreiber

Inflammatory bowel disease (IBD) typically manifests as either ulcerative colitis (UC) or Crohns disease (CD). Systematic identification of susceptibility genes for IBD has thus far focused mainly on CD, and little is known about the genetic architecture of UC. Here we report a genome-wide association study with 440,794 SNPs genotyped in 1,167 individuals with UC and 777 healthy controls. Twenty of the most significantly associated SNPs were tested for replication in three independent European case-control panels comprising a total of 1,855 individuals with UC and 3,091 controls. Among the four consistently replicated markers, SNP rs3024505 immediately flanking the IL10 (interleukin 10) gene on chromosome 1q32.1 showed the most significant association in the combined verification samples (P = 1.35 × 10−12; OR = 1.46 (1.31–1.62)). The other markers were located in ARPC2 and in the HLA-BTNL2 region. Association between rs3024505 and CD (1,848 cases, 1,804 controls) was weak (P = 0.013; OR = 1.17 (1.01–1.34)). IL10 is an immunosuppressive cytokine that has long been proposed to influence IBD pathophysiology. Our findings strongly suggest that defective IL10 function is central to the pathogenesis of the UC subtype of IBD.


Nature Genetics | 2004

Genetic variation in DLG5 is associated with inflammatory bowel disease

Monika Stoll; Brit Corneliussen; Christine M. Costello; Georg H. Waetzig; Bjorn Mellgard; W. Andreas Koch; Philip Rosenstiel; Mario Albrecht; Peter J. P. Croucher; Dirk Seegert; Susanna Nikolaus; Jochen Hampe; Thomas Lengauer; Stefan Pierrou; Ulrich R. Foelsch; Christopher G. Mathew; Maria Lagerstrom-Fermer; Stefan Schreiber

Crohn disease and ulcerative colitis are two subphenotypes of inflammatory bowel disease (IBD), a complex disorder resulting from gene-environment interaction. We refined our previously defined linkage region for IBD on chromosome 10q23 and used positional cloning to identify genetic variants in DLG5 associated with IBD. DLG5 encodes a scaffolding protein involved in the maintenance of epithelial integrity. We identified two distinct haplotypes with a replicable distortion in transmission (P = 0.000023 and P = 0.004 for association with IBD, P = 0.00012 and P = 0.04 for association with Crohn disease). One of the risk-associated DLG5 haplotypes is distinguished from the common haplotype by a nonsynonymous single-nucleotide polymorphism 113G→A, resulting in the amino acid substitution R30Q in the DUF622 domain of DLG5. This mutation probably impedes scaffolding of DLG5. We stratified the study sample according to the presence of risk-associated CARD15 variants to study potential gene-gene interaction. We found a significant difference in association of the 113A DLG5 variant with Crohn disease in affected individuals carrying the risk-associated CARD15 alleles versus those carrying non-risk-associated CARD15 alleles. This is suggestive of a complex pattern of gene-gene interaction between DLG5 and CARD15, reflecting the complex nature of polygenic diseases. Further functional studies will evaluate the biological significance of DLG5 variants.


Scopus | 2011

Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility

David Evans; Alexander Dilthey; M. Pirinen; Tetyana Zayats; C. C. A. Spencer; Z. Su; Céline Bellenguez; Colin Freeman; Amy Strange; Gilean McVean; Peter Donnelly; J. J. Pointon; David Harvey; L. H. Appleton; T. Wordsworth; Tugce Karaderi; C Farrar; Paul Bowness; B. P. Wordsworth; Grazyna Kochan; U. Opperman; M Stone; L. Moutsianis; Stephen Leslie; Tony J. Kenna; Gethin P. Thomas; Linda A. Bradbury; Patrick Danoy; Matthew A. Brown; M. Ward

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10−8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10−6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27–positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.

Collaboration


Dive into the Christopher G. Mathew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy Sanderson

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alastair Forbes

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge