Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher G. Taylor is active.

Publication


Featured researches published by Christopher G. Taylor.


Nature Cell Biology | 2008

The auxin influx carrier LAX3 promotes lateral root emergence

Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze

Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.


Science | 1994

Root-knot nematode-directed expression of a plant root-specific gene

Charles H. Opperman; Christopher G. Taylor; Mark A. Conkling

Root-knot nematodes are obligate plant parasites that induce development of an elaborate feeding site during root infection. Feeding-site formation results from a complex interaction between the pathogen and the host plant in which the nematode alters patterns of plant gene expression within the cells destined to become the feeding site. Expression of TobRB7, a gene expressed only in tobacco roots, is induced during feeding site development. The cis-acting sequences that mediate induction by the nematode are separate from those that control normal root-specific expression. Reporter transgenes driven by the nematode-responsive promoter sequences exhibit expression exclusively in the developing feeding site.


In Vitro Cellular & Developmental Biology – Plant | 2007

Agrobacterium rhizogenes: recent developments and promising applications

Veena Veena; Christopher G. Taylor

Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.


Plant Molecular Biology | 2004

A geminivirus-induced gene silencing system for gene function validation in cassava.

Ismael B. F. Fofana; Abdourahamane Sangaré; Ray Collier; Christopher G. Taylor; Claude M. Fauquet

We have constructed an African cassava mosaic virus (ACMV) based gene-silencing vector as a reverse genetics tool for gene function analysis in cassava. The vector carrying a fragment from the Nicotiana tabacumsulfur gene (su), encoding one unit of the chloroplast enzyme magnesium chelatase, was used to induce the silencing of the cassava orthologous gene resulting in yellow–white spots characteristic of the inhibition of su expression. This result suggests that well developed sequence databases from model plants like Arabidopsis thaliana, Nicotiana benthamiana, N. tabacum, Lycopersicon esculentum and others could be used as a major source of information and sequences for functional genomics in cassava. Furthermore, a fragment of the cassava CYP79D2endogenous gene, sharing 89% homology with CYP79D1endogenous gene was inserted into the ACMV vector. The resultant vector was inducing the down regulation of the expression of these two genes which catalyze the first-dedicated step in the synthesis of linamarin, the major cyanogenic glycoside in cassava. At 21 days post-inoculation (dpi), a 76% reduction of linamarin content was observed in silenced leaves. Using transgenic plants expressing antisense RNA of CYP79D1and CYP79D2, Siritunga and Sayre (2003) obtained several lines with a reduction level varying from 60% to 94%. This result provides the first example of direct comparison of the efficiency of a virus-induced gene silencing (VIGS) system and the transgenic approach for suppression of a biosynthetic pathway. The ACMV VIGS system will certainly be a complement and in some cases an alternative to the transgenic approach, for gene discovery and gene function analysis in cassava.


Plant Physiology | 2009

Physiological Roles of Glutathione S-Transferases in Soybean Root Nodules

David A. Dalton; Chris Boniface; Zachary Turner; Amy Lindahl; Hyeon Jeong Kim; Laura Jelinek; Manjula Govindarajulu; Richard E. Finger; Christopher G. Taylor

Glutathione S-transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of toxic xenobiotics and oxidatively produced compounds to reduced glutathione, which facilitates their metabolism, sequestration, or removal. We report here that soybean (Glycine max) root nodules contain at least 14 forms of GST, with GST9 being most prevalent, as measured by both real-time reverse transcription-polymerase chain reaction and identification of peptides in glutathione-affinity purified extracts. GST8 was prevalent in stems and uninfected roots, whereas GST2/10 prevailed in leaves. Purified, recombinant GSTs were shown to have wide-ranging kinetic properties, suggesting that the suite of GSTs could provide physiological flexibility to deal with numerous stresses. Levels of GST9 increased with aging, suggesting a role related to senescence. RNA interference studies of nodules on composite plants showed that a down-regulation of GST9 led to a decrease in nitrogenase (acetylene reduction) activity and an increase in oxidatively damaged proteins. These findings indicate that GSTs are abundant in nodules and likely function to provide antioxidant defenses that are critical to support nitrogen fixation.


Plant Physiology | 2008

GS52 Ecto-Apyrase Plays a Critical Role during Soybean Nodulation

Manjula Govindarajulu; Sung-Yong Kim; Marc Libault; R. Howard Berg; Kiwamu Tanaka; Gary Stacey; Christopher G. Taylor

Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean.


Plant Journal | 2010

A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis

Marc Libault; Xue-Cheng Zhang; Manjula Govindarajulu; Jing Qiu; Yee T. Ong; Laurent Brechenmacher; R. Howard Berg; Andrea Hurley-Sommer; Christopher G. Taylor; Gary Stacey

A soybean homolog of the tomato FW2.2 gene, here named GmFWL1 (Glycine max FW2.2-like 1), was found to respond strongly to inoculation with the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum. In tomato, the FW2.2 gene is hypothesized to control 30% of the variance in fruit weight by negatively regulating cell division. In the present study, the induction of GmFWL1 expression in root hair cells and nodules in response to B. japonicum inoculation was documented using quantitative RT-PCR and transcriptional fusions to both beta-glucuronidase (GUS) and green fluorescent protein (GFP). RNAi-mediated silencing of GmFWL1 expression resulted in a significant reduction in nodule number, with a concomitant reduction in nuclear size and changes in chromatin structure. The reduction in nuclear size is probably due to a change in DNA heterochromatinization, as the ploidy level of wild-type and RNAi-silenced nodule cells was similar. GmFWL1 was localized to the plasma membrane. The data suggest that GmFWL1 probably acts indirectly, perhaps through a cellular cascade, to affect chromatin structure/nuclei architecture. As previously proposed in tomato, this function may be a result of effects on plant cell division.


Plant Physiology | 2009

Large-Scale Analysis of Putative Soybean Regulatory Gene Expression Identifies a Myb Gene Involved in Soybean Nodule Development

Marc Libault; Trupti Joshi; Kaori Takahashi; Andrea Hurley-Sommer; Kari Puricelli; Sean M. Blake; Richard E. Finger; Christopher G. Taylor; Dong Xu; Henry T. Nguyen; Gary Stacey

Nodulation is the result of a symbiosis between legumes and rhizobial bacteria in soil. This symbiosis is mutually beneficial, with the bacteria providing a source of nitrogen to the host while the plant supplies carbon to the symbiont. Nodule development is a complex process that is tightly regulated in the host plant cell through networks of gene expression. In order to examine this regulation in detail, a library of quantitative reverse transcription-polymerase chain reaction primer sets was developed for a large number of soybean (Glycine max) putative regulatory genes available in the current expressed sequence tag collection. This library contained primers specific to soybean transcription factor genes as well as genes involved in chromatin modification and translational regulation. Using this library, we analyzed the expression of this gene set during nodule development. A large number of genes were found to be differentially expressed, especially at the later stages of nodule development when active nitrogen fixation was occurring. Expression of these putative regulatory genes was also analyzed in response to the addition of nitrate as a nitrogen source. This comparative analysis identified genes that may be specifically involved in nitrogen assimilation, metabolism, and the maintenance of active nodules. To address this possibility, the expression of one such candidate was studied in more detail by expressing in soybean roots promoter β-glucuronidase and green fluorescent protein fusions. This gene, named Control of Nodule Development (CND), encoded a Myb transcription factor gene. When the CND gene was silenced, nodulation was reduced. These results, associated with a strong expression of the CND gene in the vascular tissues, suggest a role for CND in controlling soybean nodulation.


Molecular Plant-microbe Interactions | 2008

Evaluation of Constitutive Viral Promoters in Transgenic Soybean Roots and Nodules

Manjula Govindarajulu; James M. Elmore; Thomas Fester; Christopher G. Taylor

The efficiency of beta-glucuronidase (GUS) expression was evaluated with five viral promoters to identify the most suitable promoter or promoters for use in soybean hairy roots, including applications to study the symbiotic interaction with Bradyrhizobium japonicum. Levels of GUS activity were fluorimetrically and histochemically assayed when the GUS (uidA) gene was driven by the Cauliflower mosaic virus (CaMV) 35S promoter and enhanced 35S (E35S) promoter, the Cassava vein mosaic virus (CsVMV) promoter, the Figwort mosaic virus (FMV) promoter, and the Strawberry vein banding virus (SVBV2) promoter. We demonstrate that GUS activity was highest when driven by the FMV promoter and that the promoter activity of 35S and SVBV2 was significantly lower than that of the CsVMV and E35S promoters when tested in soybean hairy roots. In mature soybean root nodules, strong GUS activity was evident when the FMV, 35S, and CsVMV promoters were used. These results indicate that the FMV promoter facilitates the strong expression of target genes in soybean hairy roots and root nodules.


Archive | 2009

Cell Biology of Plant Nematode Parasitism

R. Howard Berg; Christopher G. Taylor

Plant Infection by Root-Knot Nematode.- Parasitism Genes: What They Reveal about Parasitism.- Molecular Insights in the Susceptible Plant Response to Nematode Infection.- Resistant Plant Responses.- Development of the Root-Knot Nematode Feeding Cell.- Structure of Cyst Nematode Feeding Sites.- Transcriptomic Analysis of Nematode Infestation.- Genomic Analysis of the Root-Knot Nematode Genome.- Molecular Approaches Toward Resistance to Plant-Parasitic Nematodes.

Collaboration


Dive into the Christopher G. Taylor's collaboration.

Top Co-Authors

Avatar

Daniel P. Schachtman

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

R. Howard Berg

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Conkling

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Gary Stacey

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Opperman

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge