Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Graham Fenton is active.

Publication


Featured researches published by Christopher Graham Fenton.


PLOS ONE | 2012

MicroRNA Signatures in Tumor Tissue Related to Angiogenesis in Non-Small Cell Lung Cancer

Tom Donnem; Christopher Graham Fenton; Kenneth Lønvik; Thomas Berg; Katrine Eklo; Sigve Andersen; Helge Stenvold; Khalid Al-Shibli; Samer Al-Saad; Roy M. Bremnes; Lill-Tove Busund

Background Angiogenesis is regarded as a hallmark in cancer development, and anti-angiogenic treatment is presently used in non-small cell lung cancer (NSCLC) patients. MicroRNAs (miRs) are small non-coding, endogenous, single stranded RNAs that regulate gene expression. In this study we aimed to identify significantly altered miRs related to angiogenesis in NSCLC. Methods From a large cohort of 335 NSCLC patients, paraffin-embedded samples from 10 patients with a short disease specific survival (DSS), 10 with a long DSS and 10 normal controls were analyzed. The miRs were quantified by microarray hybridization and selected miRs were validated by real-time qPCR. The impacts of different pathways, including angiogenesis, were evaluated by Gene Set Enrichment Analysis (GSEA) derived from Protein ANalysis THrough Evolutionary Relationship (PANTHER). One of the most interesting candidate markers, miR-155, was validated by in situ hybridization (ISH) in the total cohort (n = 335) and correlation analyses with several well-known angiogenic markers were done. Results 128 miRs were significantly up- or down-regulated; normal versus long DSS (n = 68) and/or normal versus short DSS (n = 63) and/or long versus short DSS (n = 37). The pathway analysis indicates angiogenesis-related miRs to be involved in NSCLC. There were strong significant correlations between the array hybridization and qPCR validation data. The significantly altered angiogenesis-related miRs of high interest were miR-21, miR-106a, miR-126, miR-155, miR-182, miR-210 and miR-424. miR-155 correlated significantly with fibroblast growth factor 2 (FGF2) in the total cohort (r = 0.17, P = 0.002), though most prominent in the subgroup with nodal metastasis (r = 0.34, P<0.001). Conclusions Several angiogenesis-related miRs are significantly altered in NSCLC. Further studies to understand their biological functions and explore their clinical relevance are warranted.


PLOS ONE | 2012

Differences in gene expression between first and third trimester human placenta : a microarray study.

Vasilis Sitras; Christopher Graham Fenton; Ruth H. Paulssen; Åse Vårtun; Ganesh Acharya

Background The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. Materials and Methods Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9–12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. Results Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. Conclusions Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit.


BMC Cancer | 2015

Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients

Stine L. Figenschau; Silje Fismen; Kristin A. Fenton; Christopher Graham Fenton; Elin Mortensen

BackgroundTertiary lymphoid structures (TLS) are highly organized immune cell aggregates that develop at sites of inflammation or infection in non-lymphoid organs. Despite the described role of inflammation in tumor progression, it is still unclear whether the process of lymphoid neogenesis and biological function of ectopic lymphoid tissue in tumors are beneficial or detrimental to tumor growth. In this study we analysed if TLS are found in human breast carcinomas and its association with clinicopathological parameters.MethodsIn a patient group (n = 290) who underwent primary surgery between 2011 and 2012 we assessed the interrelationship between the presence of TLS in breast tumors and clinicopathological factors. Prognostic factors were entered into a binary logistic regression model for identifying independent predictors for intratumoral TLS formation.ResultsThere was a positive association between the grade of immune cell infiltration within the tumor and important prognostic parameters such as hormone receptor status, tumor grade and lymph node involvement. The majority of patients with high grade infiltration of immune cells had TLS positive tumors. In addition to the degree of immune cell infiltration, the presence of TLS was associated with organized immune cell aggregates, hormone receptor status and tumor grade. Tumors with histological grade 3 were the strongest predictor for the presence of TLS in a multivariate regression model. The model also predicted that the odds for having intratumoral TLS formation were ten times higher for patients with high grade of inflammation than low grade.ConclusionsHuman breast carcinomas frequently contain TLS and the presence of these structures is associated with aggressive forms of tumors. Locally generated immune response with potentially antitumor immunity may control tumorigenesis and metastasis. Thus, defining the role of TLS formation in breast carcinomas may lead to alternative therapeutic approaches targeting the immune system.


Placenta | 2015

Gene expression profile in cardiovascular disease and preeclampsia: A meta-analysis of the transcriptome based on raw data from human studies deposited in Gene Expression Omnibus

Vasilis Sitras; Christopher Graham Fenton; Ganesh Acharya

INTRODUCTION Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. METHODS Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. RESULTS Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. DISCUSSION Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CONCLUSION CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology.


BMC Genomics | 2012

Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida.

Geir Åsmund Hansen; Rafi Ahmad; Erik Hjerde; Christopher Graham Fenton; Nils Peder Willassen; Peik Haugen

BackgroundSpot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42.ResultsWe generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose.ConclusionsWe hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin.


PLOS ONE | 2012

Silencing of Renal DNaseI in Murine Lupus Nephritis Imposes Exposure of Large Chromatin Fragments and Activation of Toll Like Receptors and the Clec4e

Dhivya Thiyagarajan; Silje Fismen; Natalya Seredkina; Søren Jacobsen; Thomas Elung-Jensen; Anne-Lise Kamper; Christopher Graham Fenton; Ole Petter Rekvig; Elin Mortensen

Recent studies demonstrate that transformation of mild lupus nephritis into end-stage disease is imposed by silencing of renal DNaseI gene expression in (NZBxNZW)F1 mice. Down-regulation of DNaseI results in reduced chromatin fragmentation, and in deposition of extracellular chromatin-IgG complexes in glomerular basement membranes in individuals that produce IgG anti-chromatin antibodies. The main focus of the present study is to describe the biological consequences of renal DNaseI shut-down and reduced chromatin fragmentation with a particular focus on whether exposed large chromatin fragments activate Toll like receptors and the necrosis-related Clec4e receptor in murine and human lupus nephritis. Furthermore, analyses where performed to determine if matrix metalloproteases are up-regulated as a consequence of chromatin-mediated Toll like receptors/Clec4e stimulation. Mouse and human mRNA expression levels of DNaseI, Toll like receptors 7–9, Clec4e, pro-inflammatory cytokines and MMP2/MMP9 were determined and compared with in situ protein expression profiles and clinical data. We demonstrate that exposure of chromatin significantly up-regulate Toll like receptors and Clec4e in mice, and also but less pronounced in patients with lupus nephritis treated with immunosuppresants. In conclusion, silencing of renal DNaseI gene expression initiates a cascade of inflammatory signals leading to progression of both murine and human lupus nephritis. Principal component analyses biplot of data from murine and human lupus nephrits demonstrate the importance of DNaseI gene shut down for progression of the organ disease.


Lupus science & medicine | 2014

Clinical phenotype associations with various types of anti-dsDNA antibodies in patients with recent onset of rheumatic symptoms. Results from a multicentre observational study

Michele Compagno; Ole Petter Rekvig; Anders Bengtsson; Gunnar Sturfelt; Niels H. H. Heegaard; Andreas Jönsen; Rasmus Sleimann Jacobsen; Gro Østli Eilertsen; Christopher Graham Fenton; Lennart Truedsson; Johannes Nossent; Søren Jacobsen

Despite anti-dsDNA antibodies constitute a wide range of specificities, they are considered as the hallmark for systemic lupus erythematosus (SLE). Objective To identify clinical phenotypes associated with anti-dsDNA antibodies, independently of any clinical diagnoses. Methods Patients with recent onset of any rheumatic symptoms were screened for antinuclear antibodies (ANA). All ANA-positive and matching ANA-negative patients were examined, and their clinical phenotypes were registered, using a systematic chart formulated after consensus between the participating centres. All patients were tested for different anti-dsDNA antibody specificities with assays habitually used in each participating laboratory. Crithidia Luciliae Immuno Fluorescence Test (CLIFT) was performed three times (with two different commercial kits); solid and solution phase ELISA were performed four times. Associations between clinical phenotypes and results of anti-dsDNA assays were evaluated by linear regression analysis (LRA) and principal component analysis (PCA). Results Totally, 292 ANA-positive and 292 matching ANA-negative patients were included in the study. A full dataset for statistical analysis was obtained in 547 patients. Anti-dsDNA antibodies were most frequently detected by ELISA. LRA showed that overall positivity of anti-dsDNA antibodies was associated with proteinuria and pleuritis. Alopecia was significantly associated only with CLIFT-positivity. Besides confirming the same findings, PCA showed that combined positivity of CLIFT and ELISA was also associated with lymphopenia. Conclusions Our results show that different anti-dsDNA antibody specificities are associated with nephropathy, pleuritis, alopecia and lymphopenia, regardless of the diagnosis. It may challenge the importance of anti-dsDNA antibodies as a diagnostic hallmark for SLE.


Molecular Oncology | 2010

New specific molecular targets for radio-chemotherapy of rectal cancer.

Kristin Snipstad; Christopher Graham Fenton; Jørn Kjæve; Guanglin Cui; Endre Anderssen; Ruth H. Paulssen

Patients with locally advanced rectal cancer often receive preoperative radio‐chemotherapy (RCT). The mechanisms of tumour response to radiotherapy are not understood. The aim of this study was to identify the effects of RCT on gene expression in rectal tumour and normal rectal tissue. For that purpose tissue samples from 21 patients with resectable adenocarcinomas were collected for use in whole genome‐microarray based gene expression analysis. A factorial experimental design allowed us to determine the effect of RCT on tumour tissue alone by removing the effect of radiation on normal tissue. This resulted in 1327 differentially expressed genes in tumour tissue with p<0.05. In addition to known markers for radio‐chemotherapy, a Gene Set Enrichment Analysis (GSEA) showed a significant enrichment in gene sets associated with cell adhesion and leukocyte transendothelial migration. The profound change of cell adhesion molecule expression in rectal tumour tissue could either increase the risk of metastasis, or decrease the tumours invasive potential.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Changes in the human transcriptome upon vitamin D supplementation

Yvonne Pasing; Christopher Graham Fenton; Rolf Jorde; Ruth H. Paulssen

Vitamin D is hydroxylated in the liver and kidneys to its active form, which can bind to the vitamin D receptor (VDR). The VDR is present in a wide variety of different cells types and tissues and acts as a transcription factor. Although activation of the VDR is estimated to regulate expression of up to 5% of the human genome, our study is the first analysing gene expression after supplementation in more than 10 subjects. Subjects of a randomized controlled trial (RCT) received either vitamin D3 (n=47) in a weekly dose of 20,000 IU or placebo (n=47) for a period of three to five years. For this study, blood samples for preparation of RNA were drawn from the subjects and mRNA gene expression in blood was determined using microarray analysis. The two study groups were similar regarding gender, age, BMI and duration of supplementation, whereas the mean serum 25-hydroxyvitamin D (25(OH)D) level as expected was significantly higher in the vitamin D group (119 versus 63nmol/L). When analysing all subjects, nearly no significant differences in gene expression between the two groups were found. However, when analysing men and women separately, significant effects on gene expression were observed for women. Furthermore, when only including subjects with the highest and lowest serum 25(OH)D levels, additional vitamin D regulated genes were disclosed. Thus, a total of 99 genes (p≤0.05, log2 fold change ≥|0.2|) were found to be regulated, of which 72 have not been published before as influenced by vitamin D. These genes were particularly involved in the interleukin signaling pathway, oxidative stress response, apoptosis signaling pathway and gonadotropin releasing hormone receptor pathway. Thus, our results open the possibility for many future studies.


PLOS ONE | 2013

Plasma Fatty Acid Ratios Affect Blood Gene Expression Profiles - A Cross-Sectional Study of the Norwegian Women and Cancer Post-Genome Cohort

Karina Standahl Olsen; Christopher Graham Fenton; Livar Frøyland; Marit Waaseth; Ruth H. Paulssen; Eiliv Lund

High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a “physiological switch” towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ) signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may influence the onset and progression of disease.

Collaboration


Dive into the Christopher Graham Fenton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Endre Anderssen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silje Fismen

University Hospital of North Norway

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vasilis Sitras

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Yvonne Pasing

University Hospital of North Norway

View shared research outputs
Researchain Logo
Decentralizing Knowledge