Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Haas is active.

Publication


Featured researches published by Christopher Haas.


Experimental Neurology | 2012

Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration

Christopher Haas; Birgit Neuhuber; Takaya Yamagami; Mahendra Rao; Itzhak Fischer

Although astrocytes are involved in the production of an inhibitory glial scar following injury, they are also capable of providing neuroprotection and supporting axonal growth. There is growing appreciation for a diverse and dynamic population of astrocytes, specified by a variety of glial precursors, whose function is regulated regionally and temporally. Consequently, the therapeutic application of glial precursors and astrocytes by effective transplantation protocols requires a better understanding of their phenotypic and functional properties and effective protocols for their preparation. We present a systematic analysis of astrocyte differentiation using multiple preparations of glial-restricted precursors (GRP), evaluating their morphological and phenotypic properties following treatment with fetal bovine serum (FBS), bone morphogenetic protein 4 (BMP-4), or ciliary neurotrophic factor (CNTF) in comparison to controls treated with basic fibroblast growth factor (bFGF), which maintains undifferentiated GRP. We found that treatments with FBS or BMP-4 generated similar profiles of highly differentiated astrocytes that were A2B5-/GFAP+. Treatment with FBS generated the most mature astrocytes, with a distinct and near-homogeneous morphology of fibroblast-like flat cells, whereas BMP-4 derived astrocytes had a stellate, but heterogeneous morphology. Treatment with CNTF induced differentiation of GRP to an intermediate state of GFAP+cells that maintained immature markers and had relatively long processes. Furthermore, astrocytes generated by BMP-4 or CNTF showed considerable experimental plasticity, and their morphology and phenotypes could be reversed with complementary treatments along a wide range of mature-immature states. Importantly, when GRP or GRP treated with BMP-4 or CNTF were transplanted acutely into a dorsal column lesion of the spinal cord, cells from all 3 groups survived and generated permissive astrocytes that supported axon growth and regeneration of host sensory axons into, but not out of the lesion. Our study underscores the dynamic nature of astrocytes prepared from GRP and their permissive properties, and suggest that future therapeutic applications in restoring connectivity following CNS injury are likely to require a combination of treatments.


Experimental Neurology | 2012

The roles of neuronal and glial precursors in overcoming chondroitin sulfate proteoglycan inhibition

Andrea Ketschek; Christopher Haas; Gianluca Gallo; Itzhak Fischer

The extension of axons through the major inhibitory component of the glial scar, chondroitin sulfate proteoglycans (CSPGs), remains a key obstacle for regeneration following spinal cord injury (SCI). We have previously shown that transplants composed of neuronal and glial restricted precursors (NRP and GRP respectively) promote regeneration and connectivity in the injured spinal cord (Bonner et al., 2010, 2011), however, little is known about the properties of these precursors at a cellular level. We now report that NRP-derived neurons, in contrast to dorsal root ganglion (DRG) neurons, have the ability to extend axons and cross over from a permissive substratum (laminin) onto inhibitory CSPG in vitro. Growth cones of neurons derived from NRP, compared to DRG, exhibit significantly lower levels of the CSPG receptors protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related phosphatase (LAR). GRP-conditioned medium prepared from the same cell densities did not affect the response of primary sensory neurons to CSPG confirming that the ability of NRP-derived neurons to cross onto CSPG is determined intrinsically. However, GRP-conditioned medium collected from high density cultures increased the probability of DRG axons to cross from LN onto CSPG and increased the length of DRG axons extending on CSPG. Collectively, these results suggest that (1) neurons derived from NRPs are intrinsically insensitive to CSPGs due to low levels of receptor expression, and (2) high levels of factors secreted by GRP can reduce the inhibitory effects of CSPG and promote axonal growth. These observations provide mechanistic insights into the specific roles of NRPs and GRPs in promoting regeneration and repair following SCI.


Journal of Neurotrauma | 2013

Human Astrocytes Derived from Glial Restricted Progenitors Support Regeneration of the Injured Spinal Cord

Christopher Haas; Itzhak Fischer

Cellular transplantation using neural stem cells and progenitors is a promising therapeutic strategy that has the potential to replace lost cells, modulate the injury environment, and create a permissive environment for the regeneration of injured host axons. Our research has focused on the use of human glial restricted progenitors (hGRP) and derived astrocytes. In the current study, we examined the morphological and phenotypic properties of hGRP prepared from the fetal central nervous system by clinically-approved protocols, compared with astrocytes derived from hGRP prepared by treatment with ciliary neurotrophic factor or bone morphogenetic protein 4. These differentiation protocols generated astrocytes that showed morphological differences and could be classified along an immature to mature spectrum, respectively. Despite these differences, the cells retained morphological and phenotypic plasticity upon a challenge with an alternate differentiation protocol. Importantly, when hGRP and derived astrocytes were transplanted acutely into a cervical dorsal column lesion, they survived and promoted regeneration of long ascending host sensory axons into the graft/lesion site, with no differences among the groups. Further, hGRP taken directly from frozen stocks behaved similarly and also supported regeneration of host axons into the lesion. Our results underscore the dynamic and permissive properties of human fetal astrocytes to promote axonal regeneration. They also suggest that a time-consuming process of pre-differentiation may not be necessary for therapeutic efficacy, and that the banking of large quantities of readily available hGRP can be an appropriate source of permissive cells for transplantation.


Journal of Alzheimer's Disease | 2012

Strategies, Development, and Pitfalls of Therapeutic Options for Alzheimer's Disease

Christopher Haas

Therapeutic options for Alzheimers disease are currently limited to symptomatic treatment that only provides modest and temporary maintenance of cognitive and memory functions, without altering disease progression. Although a variety of therapeutics targeting amyloid production or plaque degradation as well as tau hyperphosphorylation and aggregation have been proposed, examined in pre-clinical models and introduced into clinical trials, many have failed to provide significant therapeutic benefit. Concerns over the adequacy of currently used pre-clinical models, in addition to questions pertaining to the timing of therapeutic administration, vis-à-vis synaptic and neuronal loss have been raised, and are further complicated by the genetic diversity of individual patients. This review will provide a brief overview of Alzheimers disease pathophysiology and the currently approved therapeutics, while the main section will focus on therapeutics currently evaluated in pre-clinical models and clinical trials.


Journal of Neuroscience Research | 2014

Transplanting Neural Progenitors Into a Complete Transection Model of Spinal Cord Injury

Carla Christina Medalha; Ying Jin; Takaya Yamagami; Christopher Haas; Itzhak Fischer

Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI) because of the potential for cell replacement and restoration of connectivity. Our previous studies have shown that transplants of NPC, composed of neuron‐ and glia‐restricted progenitors derived from the embryonic spinal cord, survived well in partial lesion models and generated graft‐derived neurons, which could be used to form a functional relay. We have now examined the properties of a similar NPC transplant using a complete transection model in juvenile and adult rats. We found poor survival of grafted cells despite using a variety of lesion methods, matrices, and delays of transplantation. If, instead of cultured progenitor cells, the transplants were composed of segmental or dissociated segments of fetal spinal cord (FSC) derived from similar‐staged embryos, grafted cells survived and integrated well with host tissue in juvenile and adult rats. FSC transplants differentiated into neurons and glial cells, including astrocytes and oligodendrocytes. Graft‐derived neurons expressed glutaminergic and GABAergic markers. Grafted cells also migrated and extended processes into host tissue. Analysis of axon growth from the host spinal cord showed serotonin‐positive fibers and biotinylated dextran amine‐traced propriospinal axons growing into the transplants. These results suggest that in treating severe SCI, such as complete transection, NPC grafting faces major challenges related to cell survival and formation of a functional relay. Lessons learned from the efficacy of FSC transplants could be used to develop a therapeutic strategy based on neural progenitor cells for severe SCI.


Scientific Reports | 2016

Guiding migration of transplanted glial progenitor cells in the injured spinal cord

Xiao-bing Yuan; Ying Jin; Christopher Haas; Lihua Yao; Kazuo Hayakawa; Yue Wang; Chunlei Wang; Itzhak Fischer

Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs.


Neuroscience | 2016

Transplantation of neural progenitor cells in chronic spinal cord injury

Ying Jin; Julien Bouyer; Jed S. Shumsky; Christopher Haas; Itzhak Fischer

Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further studies will have to identify the combination of acute and chronic interventions that will augment the survival and efficacy of neural cell transplants.


Methods of Molecular Biology | 2013

Preparation of Neural Stem Cells and Progenitors: Neuronal Production and Grafting Applications

Joseph F. Bonner; Christopher Haas; Itzhak Fischer

Neural stem cells (NSC) are not only a valuable tool for the study of neural development and function, but an integral component in the development of transplantation strategies for neural disease. NSC can be used to study how neurons acquire distinct phenotypes and how the reciprocal interactions between neurons and glia in the developing nervous system shape the structure and function of the central nervous system (CNS). In addition, neurons prepared from NSC can be used to elucidate the molecular basis of neurological disorders as well as potential treatments. Although NSC can be derived from different species and many sources, including embryonic stem cells, induced pluripotent stem cells, adult CNS, and direct reprogramming of non-neural cells, isolating primary NSC directly from rat fetal tissue is the most common technique for preparation and study of neurons with a wealth of data available for comparison. Regardless of the source material, similar techniques are used to maintain NSC in culture and to differentiate NSC toward mature neural lineages. This chapter will describe specific methods for isolating multipotent NSC and neural precursor cells (NPC) from embryonic rat CNS tissue (mostly spinal cord). In particular, NPC can be separated into neuronal and glial restricted precursors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSC and NPC isolated from rat spinal cords for subsequent in vitro or in vivo studies.


Spine | 2017

Surgical Management of the Pregnant Patient with Lumbar Disc Herniation in the Latter Stage of the Second Trimester.

Kazuo Hayakawa; Jun Mizutani; Nobuyuki Suzuki; Christopher Haas; Akira Kondo; Seiji Otsuka; Muneyoshi Fukuoka; Takanobu Otsuka

Study Design. Case report. Objective. To report on a pregnant woman successfully treated with microendoscopic discectomy in the left lateral position under general anesthesia at 24-week gestation. Summary of Background Data. Treatment for lumbar disc herniation in pregnant women poses a particular challenge due to the complexity of the clinical situation. Review of the literature emphasizes timely diagnosis with adequate management specific for each gestational period. A surgical approach mandates consideration of the physiologic parameters of pregnancy and the effects of these stressors on the fetus. Methods. A 38-year-old primigravid woman presented with persistent and incapacitating low back and left leg pain. Magnetic resonance imaging demonstrated a herniated disc at L4-5 with a severely compressed left L5 nerve root. Symptoms were resistant to conservative treatment (acetaminophen; 1200 mg/day) and nerve root block with corticosteroids (1 mg/0.5 mL of betamethasone plus 0.5 mL of 1% lidocaine) provided only transient pain relief. Operative management with surgical discectomy was discussed. Anesthesiologists, obstetricians, and neonatologists were consulted for preoperative planning, focusing on appropriate anesthesia, ideal positioning for surgical access, and provision for emergent fetal care. Surgery was ultimately performed in the left lateral position, in contrast to the oft-used prone position. Microendoscopic discectomy was performed under general anesthesia at 24-week gestation. Results. The patient experienced complete relief from pain after surgical intervention and delivered a healthy baby at 39-week gestation after normal labor. Our methods, used in accordance with our preoperative simulation, resulted in a satisfactory outcome for both mother and child. Conclusion. Although previously published cases noted the safety of operating in the prone position under epidural anesthesia, we performed minimally invasive microendoscopic discectomy in the left lateral position in combination with general anesthesia and found that this is a safe and preferable alternative for pregnant patients in the latter stage of the second trimester. Level of Evidence: N/A


Experimental Neurology | 2015

Evaluation of the anatomical and functional consequences of repetitive mild cervical contusion using a model of spinal concussion

Ying Jin; Julien Bouyer; Christopher Haas; Itzhak Fischer

Spinal cord concussion is characterized by a transient loss of motor and sensory function that generally resolves without permanent deficits. Spinal cord concussions usually occur during vehicular accidents, falls, and sport activity, but unlike brain concussions, have received much less attention despite the potential for repeated injury leading to permanent neurological sequelae. Consequently, there is no consensus regarding decisions related to return to play following an episode of spinal concussion, nor an understanding of the short- and long-term consequences of repeated injury. Importantly, there are no models of spinal concussion to study the anatomical and functional sequelae of single or repeated injury. We have developed a new model of spinal cord concussion focusing on the anatomical and behavioral outcomes of single and repeated injury. Rats received a very mild (50 kdyn, IH impactor) spinal contusion at C5 and were separated into two groups three weeks after the initial injury--C1, which received a second, sham surgery, and C2, which received a second contusion at the same site. To track motor function and recovery, animals received weekly behavioral tests--BBB, CatWalk™, cylinder, and Von Frey. Analysis of locomotor activity by BBB demonstrated that rats rapidly recovered, regaining near-normal function by one week after the first and second injury, which was confirmed using the more detailed CatWalk™ analysis. The cylinder test showed that a single contusion did not induce significant deficits of the affected limb, but that repeated injury resulted in significant alteration in paw preference, with animals favoring the unaffected limb. Intriguingly, Von Frey analysis demonstrated an increased sensitivity in the contralateral hindlimb in the C2 group vs. the C1 group. Anatomical analyses revealed that while the lesion volume of both groups was minimal, the area of spared white matter in the C2 group was significantly reduced 1 and 2mm rostral to the lesion epicenter. Reactive astrocytes were present in both groups, with the majority found at the lesion epicenter in the C1 group, whereas the C2 group demonstrated increased reactive astrocytes extending 1mm caudal to the lesion epicenter. Macrophages accumulated within the injured, dorsal and ipsilateral spinal cord, with significant increases at 2 and 3mm rostral to the epicenter in the C2 group. Our model is designed to represent the clinical presentation of spinal cord concussion, and highlight the susceptibility and functional sequelae of repeated injury. Future experiments will examine the temporal and spatial windows of vulnerability for repeated injuries.

Collaboration


Dive into the Christopher Haas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George M. Ghobrial

Thomas Jefferson University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge