Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Hill is active.

Publication


Featured researches published by Christopher Hill.


Advances in Colloid and Interface Science | 2017

Foams: From nature to industry

Christopher Hill; Julian Eastoe

This article discusses different natural and man-made foams, with particular emphasis on the different modes of formation and stability. Natural foams, such as those produced on the sea or by numerous creatures for nests, are generally stabilised by dissolved organic carbon (DOC) molecules or proteins. In addition to this, foam nests are stabilised by multifunctional mixtures of surfactants and proteins called ranaspumins, which act together to give the required physical and biochemical stability. With regards to industrial foams, the article focuses on how various features of foams are exploited for different industrial applications. Stability of foams will be discussed, with the main focus on how the chemical nature and structure of surfactants, proteins and particles act together to produce long-lived stable foams. Additionally, foam destabilisation is considered, from the perspective of elucidation of the mechanisms of instability determined spectroscopically or by scattering methods.


Langmuir | 2017

Alternative Route to Nanoscale Aggregates with a pH-Responsive Random Copolymer

Jonathan C. Pegg; Adam Czajka; Christopher Hill; Craig James; Jocelyn Alice Peach; Sarah E. Rogers; Julian Eastoe

A random copolymer, poly(methyl methacrylate-co-2-dimethylaminoethyl methacrylate) (poly(MMA-co-DMAEMA)) is shown to form nanoscale aggregates (NAs) (∼20 nm) at copolymer concentrations ≥10% w/w, directly from the preformed surfactant-stabilized latex (∼120 nm) in aqueous solution. The copolymer is prepared by conventional emulsion polymerization. Introducing a small mole fraction of DMAEMA (∼10%) allows the copolymer hydrophilicity to be adjusted by the pH and external temperature, generating NAs with tuneable sizes and a defined weight-average aggregation number, as observed by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). These NAs are different from the so-called mesoglobular systems and are insensitive to temperature at fixed pH. The relatively broad chemical composition distribution of the copolymer and lumpy (or blocky but not diblock) incorporation of DMAEMA mean that the NAs cannot be simply thought of as conventional polymer micelles. In the acidic pH regime, the amphiphilic copolymer exhibits a defined critical assembly concentration (CAC) and a minimum air-water surface tension of 45.2 mN m-1. This copolymer represents a convenient route to self-assembled NAs, which form directly in aqueous dispersions after pH and temperature triggers, rather than the typically applied (and time-consuming) water-induced micellization approach for common polymer micelles.


Colloids and Surfaces B: Biointerfaces | 2017

Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2

Masanobu Sagisaka; Shinji Ono; Craig James; Atsushi Yoshizawa; Azmi Mohamed; Frédéric Guittard; Robert M. Enick; Sarah E. Rogers; Adam Czajka; Christopher Hill; Julian Eastoe

Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.


Journal of Colloid and Interface Science | 2018

Surface and bulk properties of surfactants used in fire-fighting

Christopher Hill; Adam Czajka; Gavin Hazell; Isabelle Grillo; Sarah E. Rogers; Maximilian W. A. Skoda; Nigel Joslin; John Payne; Julian Eastoe

HYPOTHESIS Reports on the colloidal and interfacial properties of fluorocarbon (FC) surfactants used in fire-fighting foam formulations are rare. This is primarily because these formulations are complex mixtures of different hydrocarbon (HC) and fluorocarbon (FC) surfactants. By developing a greater understanding of the individual properties of these commercial FC surfactants, links can be made between structure and respective surface/ bulk behaviour. Improved understanding of structure property relationships of FC surfactants will therefore facilitate the design of more environmentally responsible surfactant replacements. EXPERIMENTS Surface properties of three partially fluorinated technical grade surfactants were determined using tensiometry and neutron reflection (NR), and compared with a research-grade reference surfactant (sodium perfluorooctanoate (NaPFO)). To investigate the bulk behaviour and self-assembly in solution, small-angle neutron (SANS) scattering was used. FINDINGS All FC surfactants in this study generate very low surface tensions (< 20 mN m-1) which are comparable, and in some cases, lower than fully-fluorinated surfactant analogues. The complementary techniques (tensiometry and NR) allowed direct comparison to be made with NaPFO in terms of adsorption parameters such as surface excess and area per molecule. Surface tension data for these technical grade FC surfactants were not amenable to reliable interpretation using the Gibbs adsorption equation, however NR provided reliable results. SANS has highlighted how changes in surfactant head group structure can affect bulk properties. This work therefore provides fresh insight into the structure property relationships of some industrially relevant FC surfactants, highlighting properties which are essential for development of more environmentally friendly replacements.


Carbohydrate Polymers | 2018

Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents

Azmi Mohamed; Tretya Ardyani; Suriani Abu Bakar; Masanobu Sagisaka; Yasushi Umetsu; Mohd Rofei Mat Hussin; Mohd Khairul Ahmad; Mohamad Hafiz Mamat; Stephen M. King; Adam Czajka; Christopher Hill; Julian Eastoe

A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of single chain anionic surfactant ionic liquids (SAILs). The surfactant ionic liquids are synthesized from conventional organic surfactant anions and a 1-butyl-3-methyl-imidazolium cation. For the first time the combination of SAILs and cellulose was used to directly exfoliate graphite. The ionic liquid 1-butyl-3-methyl-imidazolium dodecylbenzenesulfonate (BMIM-DBS) was shown to have notable affinity for graphene, demonstrating improved electrical properties of the conductive cellulose paper. The presence of BMIM-DBS in the system promotes five orders of magnitude enhancement of the paper electrical conductivity (2.71 × 10-5 S cm-1) compared to the native cellulose (1.97 × 10-10 S cm-1). A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrices. Studies into aqueous aggregation behavior using small-angle neutron scattering (SANS) point to the ability of this compound to act as a bridge between graphene and cellulose, and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. The simple and feasible process for producing conductive paper described here is attractive for the possibility of scaling-up this technique for mass production of conductive composites containing graphene or other layered materials.


Langmuir | 2017

Tuning Micellar Structures in Supercritical CO2 Using Surfactant and Amphiphile Mixtures

Jocelyn Alice Peach; Adam Czajka; Gavin Hazell; Christopher Hill; Azmi Mohamed; Jonathan C. Pegg; Sarah E. Rogers; Julian Eastoe


Physical Chemistry Chemical Physics | 2017

Trimethylsilyl hedgehogs – a novel class of super-efficient hydrocarbon surfactants

Adam Czajka; Christopher Hill; Jocelyn Alice Peach; Jonathan C. Pegg; Isabelle Grillo; Frédéric Guittard; Sarah E. Rogers; Masanobu Sagisaka; Julian Eastoe


Journal of Colloid and Interface Science | 2017

Solubilisation of oils in aqueous solutions of a random cationic copolymer

Jonathan C. Pegg; Adam Czajka; Gavin Hazell; Christopher Hill; Jocelyn Alice Peach; Sarah E. Rogers; Julian Eastoe

Collaboration


Dive into the Christopher Hill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah E. Rogers

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azmi Mohamed

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Guittard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge