Christopher Horvath
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher Horvath.
IEEE Journal of Selected Topics in Quantum Electronics | 1999
Tibor Juhasz; Frieder Loesel; Ron M. Kurtz; Christopher Horvath; Josef F. Bille; G. Mourou
We investigated the use of ultrashort pulsed (femtosecond) laser technology in corneal refractive surgery. When compared to longer pulsewidth nanosecond or picosecond laser pulses, femtosecond laser-tissue interactions are characterized by significantly smaller and more deterministic photodisruptive energy thresholds, as well as reduced shock waves and smaller cavitation bubbles. We utilized a highly reliable all-solid-state femtosecond laser system for all studies to demonstrate practicality in real-world operating conditions. Contiguous tissue effects were achieved by scanning a 5-/spl mu/m focused laser spot below the corneal surface at pulse energies of approximately 2-4 /spl mu/J. A variety of scanning patterns was used to perform three prototype procedures in animal eyes; corneal flap cutting, keratomileusis, and intrastromal vision correction. Superior dissection and surface quality results were obtained for lamellar procedures (corneal flap cutting and keratornileusis). Preliminary in vivo studies of intrastromal vision correction suggest that consistent refractive changes can also be achieved with this method. We conclude that femtosecond laser technology may be able to perform a variety of corneal refractive procedures with high precision, offering advantages over current mechanical and laser devices and techniques.
Journal of Refractive Surgery | 1998
Ron M. Kurtz; Christopher Horvath; Hsiao Hua Liu; Ronald R. Krueger; Tibor Juhasz
PURPOSE To evaluate the use of scanned intrastromal picosecond and femtosecond laser pulses in lamellar refractive surgical procedures. METHODS Intrastromal corneal photodisruption was performed in fresh porcine and primate cadaver eyes with a solid-state femtosecond laser. Laser pulses were focused 150 to 200 microns below the epithelial surface and scanned in a spiral pattern to create a plane. A flap was made by scanning an arc pattern from the plane of the spiral to the surface of the cornea. Tissue plane separation was graded using a standard scale, while internal surfaces were analyzed by scanning electron microscopy. Comparison was made to a picosecond laser system using the same delivery system device. Creation of a stromal lenticule for in situ keratomileusis was also demonstrated and compared with both laser systems. RESULTS For femtosecond pulses, tissue separation was achieved best with pulse energies from 4 to 8 microJ and spot separations from 10-15 microns. Picosecond pulses accomplished less complete separations with pulse energies of 25 microJ and spot separations from 10 to 20 microns. Surface quality corresponded to dissection results, with high-grade dissections resulting in a smooth surface appearance, versus a more irregular surface for low-grade dissections. Although high-grade dissections could be created with picosecond pulses (with optimal parameters) in ex vivo porcine eyes, only femtosecond parameters produced similar results in ex vivo primate eyes. CONCLUSION In contrast to previous attempts using picosecond lasers which require additional mechanical dissection, high precision lamellar refractive surgery may be practical with femtosecond laser pulses.
Ophthalmic Surgery and Lasers | 1999
Karin Sletten; Kimberly G. Yen; Samir Sayegh; Frieder Loesel; Christine Eckhoff; Christopher Horvath; Mali Meunier; Tibor Juhasz; Ron M. Kurtz
BACKGROUND AND OBJECTIVE To develop an animal model for evaluation of femtosecond laser intrastromal refractive surgery. METHODS Intrastromal photodisruption was performed in New Zealand Albino rabbits using a femtosecond laser system. This surgical pattern consisted of a 100 microm-tick pyramid of laser pulses starting 180 microm below the corneal surface. Animals underwent serial slit lamp examinations and corneal thickness measurements at 1,3,7,14, and 28 days, then monthly up to 1 year. RESULTS Approximately 70 microm of central corneal thinning were seen at 1 week, remaining stable up to 7 months. CONCLUSIONS Intrastromal photodisruption with femtosecond lasers produced consistent changes in corneal thickness without loss of corneal transparency. These changes were more stable than those produced with excimer laser procedures in a similar animal model.
Applications of ultrashort-pulse lasers in medicine and biology. Conference | 1998
Ron M. Kurtz; Christopher Horvath; Hsiao-hua Liu; Tibor Juhasz
We characterized the effects of pulse duration, pulse energy, and spot separation on intrastromal corneal photodisruption to determine parameters that achieve optimal surface quality and tissue plane separation. Experiments utilized two laser systems, a 60 picosecond Nd:YLF laser and a 450 femtosecond Nd:Glass laser, both operating at 1.06 micrometers wavelength. Photodisruption was performed by tightly focusing the laser beam 150 microns below the tissue surface and scanning it in a spiral pattern to create a plane. A cut to the surface was made with the laser and the two surfaces separated to form a flap. Tissue plane separation was graded according to the additional mechanical dissection required. Internal surfaces were analyzed with standard histologic methods and scanning electron microscopy. We found that the Nd:YLF laser required approximately three times the pulse energy to achieve intrastromal cuts. Picosecond parameters also required more mechanical dissection and produced lower surface quality than optimal femtosecond parameters. We conclude that femtosecond laser pulses offer significant advantages that make them ideal candidate tools for high precision intrastromal corneal surgery. The flexibility in laser pulse delivery opens up a number of potential surgical applications not possible with current mechanical or laser devices.
Optics & Photonics News | 2002
Tibor Juhasz; Ron M. Kurtz; Ferenc Raksi; Carlos G. Suarez; Christopher Horvath; Greg Spooner
Surgeons use a number of devices to create incisions in tissue. These include steel and gem blades, radio frequency, high-pressure waterjet, and electrocautery technologies. Interestingly, while lasers have an established place in the operating room, as cutting tools they play a minor role. Until recently, a major limiting factor was the lack of three-dimensional precision found with each of three types of laser-tissue interaction: photocoagulation, photoablation, and photodisruption.
Laser-tissue interaction. Conference | 1997
Ron M. Kurtz; Victor M. Elner; X. Liu; Tibor Juhasz; Frieder Loesel; Christopher Horvath; Markolf H. Niemz; Frank Noack
We investigated plasma-mediated surface ablation in corneal tissue using picosecond and femtosecond laser pulses in order to achieve high precision, non-thermal tissue removal with a non-ultraviolet laser source. Experiments utilized three laser systems, a regeneratively amplified Ti:sapphire laser, a synchronously amplified dye laser, and a regeneratively amplified picosecond Nd:YLF laser. Tissue ablation was performed by tightly focusing the laser beam on the tissue surface. Ablation thresholds were determined by monitoring the plasma spark, as well as the tissue surface. Tissue ablations were then analyzed by standard histologic methods and scanning electron microscopy. We observed a decrease in the ablation fluence threshold as the pulse duration is shortened from 200 ps to approximately 140 fs, in agreement with our theoretical predictions. Using identical pulse energies, the femtosecond laser pulses ablated tissue at higher efficiencies than the picosecond laser, with an approximately two-fold improvement in the etch depth curve. Histologic analysis reveal minimal adjacent tissue damage at either pulse duration. Femtosecond laser pulses may offer advantages that make them ideal tools for high precision tissue ablation.
High-power lasers and applications | 2002
Tibor Juhasz; Ron M. Kurtz; Christopher Horvath; Carlos G. Suarez; Lee T Nordan; Steven Slade
A brief review of commercial applications of femtosecond lasers in a clinical setting with emphasis on applications to corneal surgery is presented. The first clinical results of 208 procedures conducted from June to November 2000 is reported. The results show that femtosecond lasers may be safely used as keratome for use in LASIK procedures.
Commercial and biomedical applications of ultrafast lasers. Conference | 2000
Greg Spooner; Tibor Juhasz; Imola Ratkay-Traub; Gagik P. Djotyan; Christopher Horvath; Zachary S. Sacks; Gabrielle Marre; Doug L. Miller; A.R. Williams; Ron M. Kurtz
The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.
Medical applications of lasers in dermatology, cardiology, ophthalmology, and dentistry. Conference | 1999
Frieder Loesel; Ron M. Kurtz; Christopher Horvath; Samir Sayegh; G. Mourou; Josef F. Bille; Tibor Juhasz
We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.
Laser-Tissue Interaction and Tissue Optics II | 1996
Frieder Loesel; Markolf H. Niemz; Christopher Horvath; Tibor Juhasz; Josef F. Bille
The dependence of the fluence at the threshold of laser- induced optical breakdown on the laser pulse duration has been investigated experimentally and theoretically for human cornea, human enamel, and bovine brain tissue. For the experiments in the range from 100 fs to 200 ps, we used a femtosecond dye laser system and a picosecond Nd:YLF laser system. We observed a significant decrease of the fluence at the threshold when reducing the pulse duration. The measured dependence on the pulse duration is in good agrement with our model.