Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Hug is active.

Publication


Featured researches published by Christopher Hug.


Nature Medicine | 2006

Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells

Cheng Cheng Zhang; Megan Kaba; Guangtao Ge; Kathleen Xie; Wei Tong; Christopher Hug; Harvey F. Lodish

Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3+ cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.


The FASEB Journal | 2009

Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin

G. William Wong; Sarah A. Krawczyk; Claire Kitidis-Mitrokostas; Guangtao Ge; Eric Spooner; Christopher Hug; Ruth E. Gimeno; Harvey F. Lodish

Adiponectin is a major insulin‐sensitizing, multimeric hormone derived from adipose tissue that acts on muscle and liver to regulate whole‐body glucose and lipid metabolism. Here, we describe a novel and highly conserved paralog of adiponectin designated as Clq/TNF‐related protein (CTRP) 9. Of all the CTRP paralogs, CTRP9 shows the highest degree of amino acid identity to adiponectin in its globular C1q domain. CTRP9 is expressed predominantly in adipose tissue and females expresses higher levels of the transcript than males. Moreover, its expression levels in ob/ob mice changed in an age‐dependent manner, with significant up‐regulation in younger mice. CTRP9 is a secreted glycoprotein with multiple post‐translational modifications in its collagen domain that include hydroxylated prolines and hydroxylated and glycosylated lysines. It is se‐creted as multimers (predominantly trimers) from transfected cells and circulates in the mouse serum with levels varying according to sex and metabolic state of mice. Furthermore, CTRP9 and adiponectin can be secreted as heterooligomers when cotrans‐fected into mammalian cells, and in vivo, adiponectin/ CTRP9 complexes can be reciprocally coimmuno‐precipitated from the serum of adiponectin and CTRP9 transgenic mice. Biochemical analysis demonstrates that adiponectin and CTRP9 associate via their globular C1q domain, and this interaction does not require their conserved N‐terminal cysteines or their collagen domains. Furthermore, we show that adiponectin and CTRP9 form heterotrimers. In cultured myotubes, CTRP9 specifically activates AMPK, Akt, and p44/42 MAPK signaling pathways. Adenovirus‐mediated over‐expression of CTRP9 in obese (ob/ob) mice signifi‐cantly lowered serum glucose levels. Collectively, these results suggest that CTRP9 is a novel adipokine, and further study of CTRP9 will yield novel mechanistic insights into its physiological and metabolic function.— Wong, G. W., Krawczyk, S. A., Kitidis‐Mitrokostas, C., Ge, G., Spooner, E., Hug, C., Gimeno, R., Lodish, H. F. Identification and characterization of CTRP9, a novel secreted glycoprotein from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 23, 241‐258 (2009)


Journal of Immunology | 2012

Pulmonary Inflammation Induced by Subacute Ozone Is Augmented in Adiponectin-Deficient Mice: Role of IL-17A

David I. Kasahara; Hye Young Kim; Alison S. Williams; Norah G. Verbout; Jennifer A Tran; Huiqing Si; Allison P. Wurmbrand; Jordan Jastrab; Christopher Hug; Dale T. Umetsu; Stephanie A. Shore

Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48–72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo−/−) and wild-type mice were exposed to ozone or to room air. In wild-type mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone-induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, keratinocyte-derived chemokine, LPS-induced CXC chemokine, and G-CSF were augmented in Adipo−/− versus wild-type mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo−/− versus wild-type mice. Moreover, compared with control Ab, anti–IL-17A Ab attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo−/− but not in wild-type mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo−/− mice. Flow cytometric analysis of lung cells revealed that the number of CD45+/F4/80+/IL-17A+ macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wild-type mice and further increased in Adipo−/− mice. The IL-17+ macrophages were CD11c− (interstitial macrophages), whereas CD11c+ macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended low-dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells.


American Journal of Respiratory Cell and Molecular Biology | 2010

Impact of Adiponectin Deficiency on Pulmonary Responses to Acute Ozone Exposure in Mice

Ming Zhu; Christopher Hug; David I. Kasahara; Alison S. Williams; Norah G. Verbout; Huiqing Si; Jordan Jastrab; Amit Srivastava; Erin S. Williams; Barbara Ranscht; Stephanie A. Shore

Obese mice have increased responses to acute ozone (O(3)) exposure. T-cadherin is a binding protein for the high-molecular weight isoforms of adiponectin, an anti-inflammatory hormone that declines in obesity. The objective of the present study was to determine whether adiponectin affects pulmonary responses to O(3), and whether these effects are mediated through T-cadherin. We performed bronchoalveolar lavage (BAL) and measured pulmonary responsiveness to methacholine after acute air or O(3) exposure (2 ppm for 3 h) in adiponectin-deficient (Adipo(-/-)) or T-cadherin-deficient (T-Cad(-/-)) mice. O(3) increased pulmonary responses to methacholine and increased BAL neutrophils and protein to a greater extent in wild-type than in Adipo(-/-) mice, whereas T-cadherin deficiency had no effect. O(3)-induced increases in BAL IL-6 and keratinocyte-derived chemokine (KC), which contribute to O(3)-induced pulmonary neutrophilia, were also greater in wild-type than in Adipo(-/-) mice. In contrast, responses to O(3) were not altered by transgenic overexpression of adiponectin. To determine which adiponectin isoforms are present in the lung, Western blotting was performed. The hexameric isoform of adiponectin dominated in serum, whereas BAL was dominated by the high-molecular weight isoform of adiponectin. Interestingly, serum adiponectin was greater in T-Cad(-/-) versus wild-type mice, whereas BAL adiponectin was lower in T-Cad(-/-) versus wild-type mice, suggesting that T-cadherin may be important for transit of high-molecular weight adiponectin from the blood to the lung. Our results indicate that adiponectin deficiency inhibits pulmonary inflammation induced by acute O(3) exposure, and that T-cadherin does not mediate the effects of adiponectin responsible for these events.


PLOS ONE | 2012

Role of the Adiponectin Binding Protein, T-Cadherin (Cdh13), in Allergic Airways Responses in Mice

Alison S. Williams; David I. Kasahara; Norah G. Verbout; Alexey V. Fedulov; Ming Zhu; Huiqing Si; Allison P. Wurmbrand; Christopher Hug; Barbara Ranscht; Stephanie A. Shore

Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13) is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT), T-cadherin deficient (T-cad−/−) and adiponectin and T-cad bideficient mice to ovalbumin (OVA) and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad−/− mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad−/− versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad−/− mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

David I. Kasahara; Hye Young Kim; Joel A. Mathews; Norah G. Verbout; Alison S. Williams; Allison P. Wurmbrand; Fernanda M. C. Ninin; Felippe Neto; Leandro A.P. Benedito; Christopher Hug; Dale T. Umetsu; Stephanie A. Shore

Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo(-/-)) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo(-/-) mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo(-/-)/IL-6(-/-)) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo(-/-) vs. wild-type mice, but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. IL-17A(+) F4/80(+) cells and IL-17A(+) γδ T cells were also reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice exposed to ozone. Only BAL neutrophils were reduced in IL-6(-/-) vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1(+)F4/80(-)CD11c(-) cells, whereas in Adipo(-/-) mice F4/80(+)CD11c(+) cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo(-/-) vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo(-/-) vs. wild-type mice but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo(-/-) mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF.


PLOS ONE | 2013

Role of the Adiponectin Binding Protein, T-Cadherin (cdh13), in Pulmonary Responses to Subacute Ozone

David I. Kasahara; Alison S. Williams; Leandro A.P. Benedito; Barbara Ranscht; Lester Kobzik; Christopher Hug; Stephanie A. Shore

Adiponectin, an adipose derived hormone with pleiotropic functions, binds to several proteins, including T-cadherin. We have previously reported that adiponectin deficient (Adipo−/−) mice have increased IL-17A-dependent neutrophil accumulation in their lungs after subacute exposure to ozone (0.3 ppm for 72 hrs). The purpose of this study was to determine whether this anti-inflammatory effect of adiponectin required adiponectin binding to T-cadherin. Wildtype, Adipo−/−, T-cadherin deficient (T-cad−/−), and bideficient (Adipo−/−/T-cad−/−) mice were exposed to subacute ozone or air. Compared to wildtype mice, ozone-induced increases in pulmonary IL-17A mRNA expression were augmented in T-cad−/− and Adipo−/− mice. Compared to T-cad−/− mice, there was no further increase in IL-17A in Adipo−/−/T-cad−/− mice, indicating that adiponectin binding to T-cadherin is required for suppression of ozone-induced IL-17A expression. Similar results were obtained for pulmonary mRNA expression of saa3, an acute phase protein capable of inducing IL-17A expression. Comparison of lung histological sections across genotypes also indicated that adiponectin attenuation of ozone-induced inflammatory lesions at bronchiolar branch points required T-cadherin. BAL neutrophils and G-CSF were augmented in T-cad−/− mice and further augmented in Adipo−/−/T-cad−/− mice. Taken together with previous observations indicating that augmentation of these moieties in ozone exposed Adipo−/− mice is partially IL-17A dependent, the results indicate that effects of T-cadherin deficiency on BAL neutrophils and G-CSF are likely secondary to changes in IL-17A, but that adiponectin also acts via T-cadherin independent pathways. Our results indicate that T-cadherin is required for the ability of adiponectin to suppress some but not all aspects of ozone-induced pulmonary inflammation.


Journal of Allergy | 2013

Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice

Norah G. Verbout; Leandro A.P. Benedito; Alison S. Williams; David I. Kasahara; Allison P. Wurmbrand; Huiqing Si; Andrew J. Halayko; Christopher Hug; Stephanie A. Shore

Obesity is an important risk factor for asthma. Obese individuals have decreased circulating adiponectin, an adipose-derived hormone with anti-inflammatory properties. We hypothesized that transgenic overexpression of adiponectin would attenuate allergic airways inflammation and mucous hyperplasia in mice. To test this hypothesis, we used mice overexpressing adiponectin (Adipo Tg). Adipo Tg mice had marked increases in both serum adiponectin and bronchoalveolar lavage (BAL) fluid adiponectin. Both acute and chronic ovalbumin (OVA) sensitization and challenge protocols were used. In both protocols, OVA-induced increases in total BAL cells were attenuated in Adipo Tg versus WT mice. In the acute protocol, OVA-induced increases in several IL-13 dependent genes were attenuated in Adipo Tg versus WT mice, even though IL-13 per se was not affected. With chronic exposure, though OVA-induced increases in goblet cells numbers per millimeter of basement membrane were greater in Adipo Tg versus WT mice, mRNA abundance of mucous genes in lungs was not different. Also, adiponectin overexpression did not induce M2 polarization in alveolar macrophages. Our results indicate that adiponectin protects against allergen-induced inflammatory cell recruitment to the airspaces, but not development of goblet cell hyperplasia.


PLOS ONE | 2017

Impact of environmental microbiota on human microbiota of workers in academic mouse research facilities: An observational study

Peggy S. Lai; Joseph G. Allen; Diane S. Hutchinson; Nadim J. Ajami; Joseph F. Petrosino; Thomas Winters; Christopher Hug; Gary R. Wartenberg; Jose Vallarino; David C. Christiani

Objectives To characterize the microbial environment of workers in academic mouse research facilities using endotoxin, 16S qPCR, and 16S amplicon sequencing. To determine whether the work microbiome contributes to the human microbiome of workers. Methods We performed area air sampling from the animal rooms, dirty, middle, and setup cage wash locations in four academic mouse research facilities. 10 workers in the dirty cage wash area underwent personal air sampling as well as repeated collection of nasal, oral, and skin samples before and after the work shift. Environmental samples underwent measurement of endotoxin, mouse allergen, bacteria copy number via 16S qPCR, and microbial identification via 16S rDNA sequencing. 16S rDNA sequencing was also performed on human samples before and after the work shift. SourceTracker was used to identify the contribution of the work microbiome to the human microbiome. Results Median endotoxin levels ranged from undetectable to 1.0 EU/m3. Significant differences in mouse allergen levels, bacterial copy number, microbial richness, and microbial community structure were identified between animal, dirty, middle, and setup cage wash locations. Endotoxin levels had only a moderate correlation with microbial composition. Location within a facility was a stronger predictor of microbial community composition (R2 = 0.41, p = 0.002) than facility. The contribution of the work microbiome to the pre-shift human microbiome of workers was estimated to be 0.1 ± 0.1% for the oral microbiome; 3.1 ± 1.9% for the nasal microbiome; and 3.0 ± 1.5% for the skin microbiome. Conclusions The microbial environment of academic animal care facilities varies significantly by location rather than facility. Endotoxin is not a proxy for assessment of environmental microbial exposures using 16S qPCR or 16S rDNA sequencing. The work microbiome contributes to the composition of the nasal and skin microbiome of workers; the clinical implications of this observation should be further studied.


Proceedings of the National Academy of Sciences of the United States of America | 2004

T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin

Christopher Hug; Jin Wang; Naina Shehzeen Ahmad; Jonathan S. Bogan; Tsu-Shuen Tsao; Harvey F. Lodish

Collaboration


Dive into the Christopher Hug's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvey F. Lodish

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale T. Umetsu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge